Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Kropki kwantowe (QD) są półprzewodnikowymi nanostrukturami o średnicy 1 ÷ 100 nm, zdolnymi do fotoluminescencji. W roztworach oddziaływania pomiędzy atomami na powierzchni kropki kwantowej i otaczającymi je cząsteczkami mogą w istotny sposób wpływać na fotoluminescencje QD. Właściwość ta jest podstawą wykorzystania kropek kwantowych w analityce. Często stosuje się modyfikacje kropek kwantowych poprzez powlekanie ich powierzchni związkami zdolnymi do oddziaływania z analitem. Zastosowanie kropek kwantowych umożliwia opracowania nowych, czułych, selektywnych i szybkich metod analitycznych. W pracy przedstawiono metody oznaczania sacharydów, peptydów i białek, kwasu askorbinowego, związków fenolowych oraz zanieczyszczeń żywności i substancji niepożądanych. Opisano także szereg mechanizmów oddziaływania kropek kwantowych z oznaczanymi substancjami.
Celem badań było określenie w jaki sposób obecność różnych izomerów optycznych a-tokoferolu wpływa na przepuszczalność membrany lipidowej, stanowiącej prosty model błony komórkowej. Ze względu na swą hydrofobowość a-tokoferol łatwo rozpuszcza się w lipidowym rdzeniu błony komórkowej, wpływając tym samym na jej strukturę, stabilność i inne właściwości. D-α-tokoferol jest naturalną formą witaminy E, występującą m. in. w olejach roślinnych czy warzywach. Natomiast DL-α- tokoferol jest syntetyczną formą tej witaminy, która może być stosowana jako dodatek do żywności. Niektórzy autorzy uważają, że mimo takiej samej budowy chemicznej syntetyczna forma α-tokoferolu może wykazywać odmienne działanie in vivo w porównaniu z formą naturalną, dlatego też ważne jest poznanie mechanizmów oddziaływania tokoferolu z innymi cząsteczkami o dużym znaczeniu biologicznym i strukturami komórkowymi na poziomie molekularnym. W badaniach zastosowano D-a-tokoferol oraz mieszaninę izomerów D i L α-tokoferolu (a-T). Do przygotowania liposomów (membran lipidowych) użyto dipalmitynianu fosfatydylocholiny (DPPC) oraz L-α-fosfatydylocholiny (lecytyny) z żółtka jaja (PC). Do monitorowania zmian strukturalnych zachodzących w membranie lipidowej zastosowano metodę fluorescencyjną z użyciem sondy (barwnika) - kwasu 1-anilinonaftaleno-8-sulfonowego (ANS). Proces wnikania sondy ANS do membrany DPPC w fazie żelowej zachodził na drodze natychmiastowej absorpcji (w czasie od jednej do kilku sekund) z pominięciem fazy adsorpcji. Dodatek α-tokoferolu do membrany nie zmieniał szybkości wnikania sondy. Jedynie w przypadku D-α-tokoferolu ilość zaabsorbowanej sondy wynosiła 25% wartości odpowiadającej samej membranie DPPC i DPPC z DL-α-tokoferolem. W membranie DPPC zaobserwowano wyraźny wzrost jej przepuszczalności związany z głównym przejściem krystalicznym. W przypadku membrany DPPC z D-α-tokoferolem i DL-α-tokoferolem stwierdzono, że maksymalny wzrost przepuszczalności błony w wyniku zmiany fazy membrany był o około 60% mniejszy niż ma to miejsce w samym DPPC, a zmiany przepuszczalności obserwowane w temperaturze głównego przejścia krystalicznego charakteryzowały się łagodniejszym przebiegiem. α- Tokoferol hamował wnikanie sondy ANS do membrany w fazie ciekłokrystalicznej. Nie zaobserwowano istotnych różnic w przepuszczalności membrany w obecności D i DL-α-tokoferolu.
Celem badań było określenie mechanizmów oddziaływania cząsteczek D-α-tokoferolu pomiędzy sobą w zależności od stężenia w rozpuszczalnikach organicznych oraz w membranie lipidowej, stanowiącej prosty model błony komórkowej. Jednym z aspektów badań była ocena wpływu zwiększonego stężenia tego homologu na strukturę membrany. Badania polegały na pomiarach właściwości spektroskopowych (absorbancji i emisji fluorescencji) D-α-tokoferolu o różnych stężeniach w membranie lipidowej, n-heksanie i metanolu. Wyniki pomiarów absorbancji i emisji fluorescencji w rozpuszczalnikach homogenicznych dowiodły, że wzrostowi stężenia D-α-tokoferolu towarzyszyło powstawanie dimerów w wyniku pojawienia się niekowalencyjnych oddziaływań pomiędzy cząsteczkami tokoferolu, przy stężeniu powyżej 460 mM w n-heksanie oraz 180 mM w metanolu. Mechanizm oddziaływania D-α-tokoferolu w membranach i z membranami jest inny niż w rozpuszczalnikach homogenicznych. Stwierdzono, że D-α-tokoferol obecny w membranie lipidowej wywierał wpływ na jej strukturę. Monomery D-α-tokoferolu ulegały wbudowaniu w membranę, a przekroczenie granicznych stężeń tej substancji w błonie lipidowej (140 μM przy stężeniu membrany 0,2 mg/cm3 oraz 420 μM w przypadku membrany o stężeniu 2 mg/cm3) powodowało zaburzenie lamelarnej struktury dwuwarstwy oraz pojawienie się konglomeratów wiążących tokoferol i usuwających go z wodnej dyspersji. Wykazano również, że dzięki wygaszaniu fluorescencji za pomocą akrylamidu, D-α-tokoferol łącznie z częścią chromanolową był całkowicie ulokowany w fazie lipidowej.
The fluorescence intensity of tocopherols originated from cold-pressed sunflower oil at different degree of oxidation in presence of l,2-dipalmitylo-sn-glicero-3- -fosfatidylocholine lipid (DPPC) membrane have been measured. It has been shown that fluorescence of tocopherol depends on amount of oil as well as on membrane concentration in the sample. Addition of oil with increasing peroxide value PV decreased the tocopherol fluorescence due to its disappearance in the sample. At constant membrane concentration chromatographically determined the amount of tocopherol in oil sample correlated with peroxide value and fluorescence intensity. Such results allowed us construct calibration curve which may be used for fast and accurate peroxide value determination using fluorescence technique.
The effects of embedding up to 60 mol% of α-tocopherol (α-Toc) on the morphology and structure of the egg phosphatidylcholine (PC) membrane were studied using spectroscopic techniques. The resulting vesicles were subjected to turbidometric and dynamic light scattering measurements to evaluate their size distribution. The α-Toc intrinsic fluorescence and its quenching was used to estimate the tocopherol position in the membrane. Optical microscopy was used to visualize morphological changes in the vesicles during the inclusion of tocopherol into the 2 mg/ml PC membrane. The incorporation of up to 15 mol% of tocopherol molecules into PC vesicles is accompanied by a linear increase in the fluorescence intensity and the simultaneous formation of larger, multilamellar vesicles. Increasing the tocopherol concentration above 20 mol% induced structural and morphological changes leading to the disappearance of micrometer-sized vesicles and the formation of small unilamellar vesicles of size ranging from 30 to 120 nm, mixed micelles and non-lamellar structures.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.