PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 517 | 1 |

Tytuł artykułu

Metody statystyczne do oceny roznorodnosci fenotypowej dla cech ilosciowych w kolekcjach roslinnych zasobow genowych

Autorzy

Warianty tytułu

EN
Statistical methods used for analysis of quantitative phenotypic diversity in plant genetic resources

Języki publikacji

PL

Abstrakty

PL
W pracy przedstawiono krótką charakterystykę najważniejszych jedno- i wielocechowych metod statystycznych, stosowanych do oceny różnorodności obiektów w kolekcjach roślinnych zasobów genowych pod względem cech ilościowych oraz dyskusję nad wyborem i stosowaniem tych narzędzi z uwzględnieniem pakietu komputerowego SAS. Opracowanie zostało oparte na analizie metodyki statystycznej w wielu oryginalnych publikacjach z zakresu roślinnych zasobów genowych, zawartych w renomowanych czasopismach naukowych. Metody jednowymiarowe są oparte na losowym modelu analizy wariancji dla danych z doświadczenia, założonego w układzie blokowym w jednym środowisku oraz dla danych z serii doświadczeń, założonych w tym samym układzie blokowym. Spośród wielocechowych metod analizy różnorodności obiektów wskazano na dużą efektywność zintegrowanej metody o angielskiej nazwie pattern analysis., Polega ona na zastosowaniu analizy skupień, jako metody klasyfikującej obiekty w grupy wielocechowo jednorodne oraz analizy składowych głównych (jeśli stosowaną miarą bliskości obiektów jest odległość euklidesowa) lub analizy zmiennych kanonicznych (jeśli stosowaną miarą bliskości obiektów jest odległość Mahalanobisa), jako metod komplementarnych, służących do analitycznej i graficznej oceny podobieństwa i niepodobieństwa badanych obiektów i ich grup jednorodnych.
EN
This review is based on both classical and newest original research publications found in prominent journals on plant genetic resources. It exemplifies, illustrates and summarizes statistical methodology for analyzing multivariate data from trials and surveys applied to evaluate phenotypic diversity in germplasm collections. Specific methodological knowledge necessary to select appropriate techniques, carry out data analysis and make proper interpretations of analytical results is discussed. Those uni- and multivariate statistical methods proved effective for evaluating phenotypic diversity in plant genetic resources for quantitative traits are shortly characterized and discussed with respect to their use with the SAS package. Univariate methods are based on random ANOVA model for data originating from a trial carried out in a randomized complete block design and also in a multi-environment trials carried out in the same block design. Pattern analysis is mainly recommended, among multivariate techniques, as an effective procedure to evaluate quantitative phenotypic diversity in the germplasm collections. It is a combined approach including cluster analysis as a classification procedure and principal component analysis or canonical variant analysis as the ordination procedures to show graphically similarities and dissimilarities among accessions and their homogenous groups.

Wydawca

-

Rocznik

Tom

517

Numer

1

Opis fizyczny

s.21-41,rys.,bibliogr.

Twórcy

autor
  • Katedra Biometrii, Szkola Glowna Gospodarstwa Wiejskiego, ul.Nowowiejskiego 159, 02-776 Warszawa

Bibliografia

  • Alemayehu N., Becker H. 2002. Genotypic diversity and patterns of variation in a germplasm material of Ethiopian mustard (Brassica carinata A. Braun). Genet. Res. Crop Evol. 49: 573-582.
  • Annicchiarico P. 2002. Genotype x Environment Interactions - Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. FAO Plant Production and Protection Paper - 174, Rome: 115 ss.
  • Annicchiarico P., Pecetti L., Boggini G., Doust M.A. 2000. Repeatability of large-scale germplasm evaluation results in durum wheat. Crop Sci. 40: 1810-1814.
  • Ariyo O.J. 1993. Genetic diversity in West African okra (Abelmoschus caillei) (A. Chev.) Stevels - Multivariate analysis of morphological and agronomic characteristics. Genetic Resources and Crop Evolution 40: 25-32.
  • Assefa K., Ketema S., Tefera H., Nguyen H., Blum A., Ayele M., Bai G, Simane B., Kefyalew T. 1999. Diversity among germplasm lines of the Ethiopian cereal tef [Eragrostis tef (Zucc.) Trotter]. Euphytica 106: 87-97.
  • Assefa K., Seyfu K., Tefera H., Kefyalew T., Chundera F. 2000. Trait diversity, heritability and genetic advance in selected germplasm lines of tef [Emgmstis tef (Zucc.)Trotter]. Hereditas 133: 29-37.
  • Assefa K., Tefera H., Arnulf M., Kefyalew T., Hundera F. 2001a. Quantitative trait diversity in tef [Eragrostis tef (Zucc.) Trotter] germplasm from Central and Northern Ethiopia. Genetic Resources and Crop Evolution 48: 53-61.
  • Assefa K., Tefera H., Arnulf M., Kefyalew T., Hundera F. 2001b. Variability, heritability and genetic advance in pheno-morphic and agronomic traits of tef [Eragrostis Tef (Zucc.) Trotter] germplasm from eight regions of Ethiopia. Hereditas 134: 103-113.
  • Assefa K., Merker A., Tefera H. 2003. Multivariate analysis of diversity of tef (Eragrostis tef (Zucc.) Trotter) germplasm from western and southern Ethiopia. Hereditas 138: 228-236.
  • Ayana A., Bekele E. 1999. Multivariate analysis of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea. Genet. Res. Crop Evol. 46: 273-284.
  • Bekele F.L., Bekele I., Butler D.R., Bidaisee G.G. 2006. Patterns of morphological variation in a sample of cacao (Theobroma Cacao L.) germplasm from the International Cocoa Genebank, Trinidad. Genet. Res. Crop Evol. 53: 933-948.
  • Berdahl J.D., Mayland H.F., Asay K.H., Jefferson P.G 1999. Variation in agronomic and morphological traits among Russian wildrye accessions. Crop Sci. 39: 1890-1895.
  • Bertero H.D., de la Vega A.J., Correa G, Jacobsen S.E., Mujica A. 2004. Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Research 89: 299-318.
  • Bolańos-Aguilar E.-D., Huyghe C., Ecalle C., Hacquet J., Julier B. 2002. Effect of cultivar and environment on seed yield in alfalfa. Crop Sci. 42: 45-50.
  • Caliński T., Harabasz J. 1974. A dendrite method for cluster analysis. Comm. Stat. 3: 1-27.
  • Camussi A., Ottaviano E., Caliński T., Kaczmarek Z. 1985. Genetic distances based on quantitative traits. Genetics 111: 945-962.
  • Cardi T. 1998. Multivariate analysis of variation among Solanum commersonii (+) S. tuberosum somatic hybrids with differentploidy levels. Euphytica 99: 35-41.
  • Casler M.D., van Santen E. 2000. Patterns of variation in a collection of meadow fescue accessions. Crop Sci. 40: 248-255.
  • Clements J.C., Cowling W.A. 1994. Patterns of morphological diversity in relation to geographical origins of wild Lupinus angustifolius from Aegean region. Genetic Resources and Crop Evolution 41: 109-122.
  • Cooper M., Stucker R.E., De Lacy I.H., Harch B.D. 1997. Wheat breeding nurseries, target environments, and indirect selection for grain yield. Theoret. Appl. Gen. 37: 1168-1176.
  • Cooper M., Woodruff D.R., Phillips I.G., Basford K.E., Gilmour A.R. 2001. Genotype-by-management interactions for grain yield and grain protein concentration of wheat. Field Crops Research 69: 47-67.
  • Crossa J., Bellon M.R., Franco J. 2002. Quantitative method for classifying farmers using socioeconomic variables, w: Quantitative analysis of data from participatory methods in plant breeding. Bellon M.R., Reeves J. (Eds), CIMMYT, Mexico: 113-127.
  • Crossa J., Franco J. 2004. Statistical methods for classifying genotypes. Euphytica 137: 19-37.
  • De Giorgio D., Polignano G.B. 2001. Evaluating the biodiversity of almond cultivars from a germplasm collection field in southern Italy, w: Sustaining the global farm. Scott D.E., Mohtar R.H. (Eds), Steinhardt G.C. Purdue University: 305-311.
  • de la Vega A.J., DeLacy I.H., Chapman S.C. 2007. Changes in agronomic traits of sunflower hybrids over 20 years of breeding in central Argentina. Field Crops Research 100: 73-81.
  • DeLacy I.H., Basford K.E., Cooper M., Fox P.N. 1996a. Retrospective analysis of historical data sets from multi-environment trials-theoretical development, w: Plant adaptation and crop improvement. Cooper M., Hammer G.L (Eds), CAB International, Wallingford, UK: 243-267.
  • DeLacy I.H., Basford K.E., Cooper M., Bull J.K, McLaren C.G. 1996b. Analysis of multi-environment trials - an historical perspective, w: Plant adaptation and crop improvement. Cooper M., Hammer G.L (Eds), CAB International, Wallingford, UK: 39-123.
  • DeLacy I.H., Skovmand B., Huerta J. 2000. Characterization of Mexican wheat landraces using agronomically useful attributes. Genetic Resources and Crop Evolution 47: 591-602.
  • De Ron A.M., Casquero P.A., González A.M., Santalla M. 2004. Environmental and genotypic effects on pod characteristics related to common bean quality. J. Agron. Crop Sci. 190: 248-255.
  • Dudley J.W., Moll R.H. 1969. Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop. Sci. 9: 257-262.
  • Evenson R.E., Gollin D., Santaniello V. 1998. Agricultural values of plant genetic resources. CABI Publishing, Wallinglord, UK: 285 ss.
  • Falconer D.S., Mackay T.F.C. 1996. Introduction to quantitative genetics. 4th. ed. Longman, Essex, England: 284 ss.
  • Flores F., Gutierrez J.C., Lopez J., Moreno M.T., Cuberto J.I. 1997. Multivariate analysis approach to evaluate a germplasm collection of Hedysarum coronarium L. Genetic Resources and Crop Evolution 44: 545-555.
  • Frankel O.H., Brown A.H.D., Burdon J.J. 1995. The conservation of plant biodiversity. Cambridge University Press, Cambridge: 299 ss.
  • Franco J., Crossa J., Villasenor J., Taba S., Eberhart S.A. 1997. Classifying Mexican maize accessions using hierarchical and density search methods. Crop Sci. 37: 972-980.
  • Franco J., Crossa J., Ribaut J.M., Bertran J., Warburton M.L., Khairallah M. 2001. A method for combining molecular markers and phenotypic attributes for classifying, plant genotypes. Theoretical and Applied Genetics 103: 944-952.
  • Gutierrez L., Franco J., Crossa J., Abadie T. 2003. Comparing a preliminary racial classification with a numerical classification of the maize landraces of Uruguay. Crop Sci. 43: 718-727.
  • Harch B.D., Basford K.E., DeLacy I.H., Lawrence P.K. 1997. The analysis of large scale data taken from the world groundnut (Arachis hypogaea L.) germplasm collection. I. Two-way quantitative data. Euhytica 95: 27-38.
  • Hartung K., Piepho H.P. 2005. A threshold model for multiyear genebank data based on different rating scales. Crop Sci. 45: 1045-1052.
  • Henninger M.R., Sterrett S.B., Haynes K.G. 2000. Broad-sense heritability and stability of internal heat necrosis and specific gravity in tetraploid potatoes. Crop Sci. 40: 977-984.
  • Holland J.B. 2006. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci. 46: 642-654.
  • Holland J.B., Cervantes-Martinez C.T. 2003. Estimating and interpreting heritability for plant breeding. Plant Breeding Reviews 22: 9-112.
  • Hooks T., Petersen J.F., Marx D.B., Vogel K.P. 2006. Variation in the U.S. photoperiod insensitive sorghum collection for chemical and nutritional traits. Crop Sci. 46: 751-757.
  • Jahufer M.Z.Z., Cooper M., Harch B.D. 1997. Pattern analysis of the diversity of morphological plant attributes and yield in a world collection of white clover (Trifolium repens L.) germplasm characterised in a summer moisture stress environment of Australia. Genet. Res. Crop Evol. 44: 289-300.
  • Jaradat A.A. 1991. Phenotypic divergence for morphological and yield-related traits among landrace genotypes of durum wheat from Jordan. Euphytica 52: 155-164.
  • Jaradat A.A., Shahid M., Al Maskri A.Y. 2003. Genetic diversity in the Batini barley landrace from Oman. I. Spike and seed quantitative and qualitative traits. Crop Sci. 43: 718-727.
  • Jaynes D.B., Kaspar T.C., Colvin T.S., James D.E. 2003. Cluster analysis of spatio-temporal corn yield patterns in an Iowa field. Agron. J. 95: 574-86.
  • Johnson R.A., Wichern D.W. 2002. Applied multivariate statistical analysis. Prentice-Hall, Inc. Upper Saddle River, NJ, USA: 800 ss.
  • Khattree R., Naik D.N. 2000. Multivariate data reduction and discrimination with SAS software. SAS Institute Inc., Cary, NC: 574 ss.
  • Krzanowski W.J. 1988. Principles of multivariate analysis: a users's perspective. Oxford University Press, Oxford: 584 ss.
  • Kubicka H., Mądry W., Sieczko L., Komar A., Puchalski J. 2004. Wielowymiarowa analiza różnorodności genotypowej linii wsobnych żyta ozimego (Secale cereale L.) dla cech rolniczych i fenologicznych. Zesz. Probl. Post. Nauk Rol. 497: 375-389.
  • Lee J., Kaltsikes P.J. 1973. The application of Mahalanobis's generalized distance in durum wheat. Euphytica 22: 124-131.
  • Li C.T., Shi C.H., Wu J.G, Xu H.M., Zhang H.Z., Ren Y.L. 2004. Methods of developing core collections based on the predicted genotypic value of rice (Oryza sativa L.). Theoretical and Applied Genetics 108: 1172-1176.
  • Littell R.C., Milligan G.A., Stroup W.W., Wolfinger R.D., Schabenberger O. 2006. SAS for mixed models. SAS Institute Inc., Cary, NC: 840 ss.
  • Mardia K.V, Kent J.T., Bibby J.M. 1979. Multivariate analysis. Acad. Press, London: 322 ss.
  • Massa A.N., Jensen K.B., Larson S.R., Hole D.J. 2004. Morphological variation in Bromus sect.Ceratochloa germplasm of Patagonia. Can. J. Bot. 82: 136-144.
  • Mądry W. 1993. Studia statystyczne nad wielowymiarową oceną zróżnicowania cech ilościowych w kolekcjach zasobów genowych zbóż. Monografie i Rozprawy, Wydawn. SGGW: 109 ss.
  • Mądry W., Talbot M., Ukalski K., Drzazga T., Iwańska M. 2006. Podstawy teoretyczne znaczenia efektów genotypowych i interakcyjnych w hodowli roślin na przykładzie pszenicy ozimej. Biul. IHAR 240/241: 13-31.
  • Milligan G.W., Cooper M.C. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika 50: 159-179.
  • Mohammadi S.A., Prasanna B.M. 2003. Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Sci. 43: 1235-1248.
  • Muszyński S., Mądry W., Tomaszewski M., Sowa A., Zimny J. 2000. Genetyka dla rolników. Fundacja „Rozwój SGGW”, Warszawa: 176 ss.
  • Naghavi M.R., Jahansouz M.R. 2005. Variation in the agronomic and morphological traits of Iranian chickpea accessions. J. Integrative Plant Biol. 47: 375-379.
  • Noffsinger S.L., van Santen E. 2005. Evaluation of Lupinus albus L. germplasm for the Southeastern USA. Crop Sci 45: 1941-1950.
  • Ortiz R., Ruiz-Tapia E.N., Mujica-Sanchez A. 1998. Sampling strategy for a core collection of Peruvian quinoa germplasm. Theoretical and Applied Genetics 96: 475-483.
  • Pecetti L., Annicchiarico P., Damania A.B. 1992. Biodiversity in a germplasm collection of durum wheat. Euphytica 60: 229-238.
  • Piepho H.P., Möhring J. 2005. Best linear unbiased prediction of cultivar effects for subdivided target regions. Crop Sci. 45: 1151-1159.
  • Prosperi J.M., Jenczewski E., Angevain M., Ronfor J. 2006. Morphologic and agronomic diversity of wild genetic resources of Medicago sativa L. collected in Spain. Genetic Resources and Crop Evolution 53: 843-856.
  • Rebourg C., Gouesnard B., Charcosset A. 2001. Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation. Heredity 86: 574-587.
  • Rezai A., Frey K.J. 1990. Multivariate analysis of variation among wild oat accessions - seed traits. Euphytica 49: 111-119.
  • Robinson G.K. 1991. That BLUP is a good thing: the estimation of random effects. Stat. Sci. 6: 15-51.
  • Rojas W., Barriga P., Figueroa H. 2000. Multivariate analysis of the genetic diversity of Bolivian quinua germplasm. Plant Genetic Resources Newsletter 122: 16-23.
  • Rotondi A., Magli M., Ricciolini C., Baldoni L. 2003. Morphological and molecular analyses for the characterization of a group of Italian olive cultivars. Euphytica 132: 129-137.
  • SAS/STAT User's Guide, Version 8.2. 2002. SAS Institute, Cary N: 343 ss.
  • Schlösser I., Kranz J., Bonman J.M. 2000. Morphological classification of traditional Philippine upland rice cultivars in upland nurseries using cluster analysis methods for recommendation, breeding and selection purposes. J. Agron. Crop Sci. 184: 165-171.
  • Searle S.R. 1987. Linear models for unbalanced data. J. Wiley & Sons, New York: 536 ss.
  • Searle S.R., Casella G., McCulloch C.E. 1992. Variance components. John Wiley & Sons, New York: 498 ss.
  • Seber G.A.F. 1984, 2004. Multivariate observations. J. Wiley & Sons, New York: 685 ss.
  • Sieczko L., Mądry W., Zieliński A., Paderewski J., Urbaś-Szwed K. 2004. Zastosowanie analizy składowych głównych w badaniach nad wielocechową charakterystyką zmienności genetycznej w kolekcji zasobów genowych pszenicy twardej (Triticum durum L.). Coll. Biom. 34: 223-239.
  • Sinebo W., Gretzmacher R., Edelbauer A. 2004. Genotypic variation for nitrogen use efficiency in Ethiopian barley. Field Crops Research 85: 43-60.
  • Sneath P.H.A., Sokal R.R. 1973. Numerical taxonomy. W.H. Freeman, San Francisco: 513 ss.
  • Ukalska J., Mądry W., Ukalski K., Masny A., Żurawicz E. 2006. Patterns of variation and correlation among traits in a strawberry (Fragaria ananassa Duch.) germplasm collection. Journal of Fruit and Ornamental Plant Research (w druku).
  • Ukalska J., Mądry W., Ukalski K., Masny A. 2007a. Wielowymiarowa ocena różnorodności fenotypowej w kolekcji zasobów genowych truskawki (Fragaria ananassa DUCH.). Część I. Analiza zmienności. Zesz. Probl. Post. Nauk Rol. 517: 749-757.
  • Ukalska J., Mądry W., Ukalski K., Masny A. 2007b. Wielowymiarowa ocena różnorodności fenotypowej w kolekcji zasobów genowych truskawki (Fragaria ananassa Duch.). Część II. Grupowanie obiektów. Zesz. Probl. Post. Nauk Rol. 517: 759-766.
  • Upadhyaya H.D., Dwivedi S.L., Gowda C.L.L., Singh S. 2005. Identification of diverse germplasm lines for agronomic traits in a chickpea (Cicer arietinum L.) core collection for use in crop improvement. Field Crops Research 100: 320-326.
  • Upadhyaya H.D., Mallikarjuna Swamy B.P., Kenchana Goudar P.V., Kullaiswamy B.Y., Singh S. 2005. Identification of diverse groundnut germplasm through multi-environment evaluation of a core collection for Asia. Field Crops Research 93: 293-299.
  • Vaylay R., van Santen E. 2002. Application of canonical discriminant analysis for the assessment of genetic variation in tall fescue. Crop Sci. 42: 534-539.
  • Ward J.H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Statist. Assoc. 58: 236-244.
  • Williams W.T. 1976. Pattern analysis in agricultural science. Elsevier, New York: 136 ss.
  • Xu H., Mei H., Hu J., Zhu J., Gong P. 2006. Sampling a core collection of Island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits. Genetic Resources and Crop Evolution 53: 515-521.
  • Yeater K.M., Bollero G.A., Bullock D.G, Lane Rayburn A., Rodriguez-Zas S. 2004.
  • Assessment of genetic vriation in hairy vetch using canonical discriminant aalysis. Crop Sci. 44: 185-89.
  • Zizumbo-Villarreal D., Barrera M.F., Hernandez N.T., Colunga-Garcýa Marýn P. 2005.
  • Morphological variation of fruit in Mexican populations of Cocos nucifera L. (Arecaceae) under in situ and ex situ conditions. Genetic Resources and Crop Evolution 52: 421-434.
  • Žaková M., Benková M. 2006. Characterization of spring barley accessions based on multivariate analysis. Commun. Biometry Crop Sci. 1: 124-134.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-1071e036-ec4c-404d-924e-f069f18725ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.