Ograniczanie wyników

Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 20

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A system for the positive selection of transational initiation suppressors in S. cerevisiae has been developed. A mutant with an ATA initiation codon in the HEM12 gene, encoding uroporphyrinogen decarboxylase, was used to select cis- and trans-acting suppressors. These suppressors partially restore growth on nonfermentable carbon sources, such as glycerol, but still allow the accumulation of porphyrins. All extragenic suppressors are mapped to the SUI1 locus, encoding initiation factor eIF1. The effect of the hem12 mutation is also partially reversed by the known SUI3 suppressor encoding the beta subunit of eIF2. In contrast, the sui2 suppressor encoding the alpha subunit of eIF2 does not affect the hem 12 phenotype. The intragenic suppressors are able to restore the translation of hem12 due to the generation of additional, in frame AUG codons upstream of the hem12-14 mutation. Mutational analysis of the HEM12 leader sequence was also performed to determine the role of small open reading frames (uORFs) present upstream of the HEM12 ORF. Studies on the expression of integrated hem12-1/4-lacZ fusion, devoid of all upstream ATGs, indicate a lack of regulatory effect of uORFs on HEM12 translation.
We developed a real-time PCR assay for measuring relative quantities (RQ) of p53 tumor suppressor mRNA in the whitefish (Coregonus lavaretus, Salmonidae, Teleostei). Real-time PCR primers for the p53 gene were designed from a region that was found to be conserved among salmonid p53 genes. To test for the usefulness of the assay we performed a treatment study, using benzo[a]pyrene (B[a]P) a putative p53-inducer. Two groups of hatchery raised whitefish, with an average body mass of 15 g and total length of 12 cm were either given an intraperitoneal injection (10 mg • kg-1) of B[a]P in corn oil (2 mg B[a]P ml-1 corn oil) or corn oil alone (Control). After treatment (48 h, 7°C), two random fish from each group were anesthetized and the liver, head kidney and brain were collected for mRNA isolation and analysis. In the control fish, relative quantification analysis based on the p53 mRNA levels in liver (RQ=1.00) showed higher basal levels of p53 mRNA in the head kidney (RQ=1.69), and lower in the brain (RQ=0.41). In all three tissues sampled, p53 mRNA was affected by treatment with B[a]P. Liver tissue showed the greatest induction (RQ=1.53) from base levels (RQ=1.00), followed by brain (RQ=1.36), and head kidney (RQ=1.23). These results confirm that p53 mRNA is generally present at lower levels in differentiated tissues (liver and brain) than in those tissues with cell lines (head kidney), and demonstrate that p53 is moderately inducible by B[a]P in the whitefish. The approach presented here has the advantage of providing rapid and accurate measures of p53 induction in various tissues of fish responding to PAH contaminant exposure.
The purpose of our study was to assess whether the chemical composition of drinking water in the city of Szczecin, Poland, creates the correct environment in the oral cavity for promoting regeneration processes in the mineralized tissue of teeth. The drinking water samples were collected from a water treatment station, as raw and treatment water, and from consumer’s water pipes. The concentration of calcium and magnesium was determined by F-AAS method, fluoride by ion-specific electrode, and pH by pH-Meter. The average concentrations of calcium (46.9 mg/dm³), fluoride (0.73 mg/dm³), and pH level (7.46) determined in tap drinking water create a sufficient environment in the oral cavity for promoting regeneration processes in tooth mineralized tissues. Because of the low concentrations of magnesium in drinking water (14.1 mg/dm³), this element should be supplemented in a person’s diet.
To improve our knowledge of the role of microRNAs (miRs) in responses of the porcine digestive system to two Fusarium mycotoxins, zearalenone (ZEN) and deoxynivalenol (DON), we examined the expression of 7 miRs (miR-9, miR-15a, miR-21, miR-34a, miR-122, miR-125b, and miR-192), previously found to be deregulated in diseased liver and colon cells. In this study, immature gilts were exposed to NOEL doses of ZEN (40 |ig/kg/d), DON (12 |ig/kg/d), ZEN+DON (40 + 12 |ig/kg/d), and placebo (negative control group) for 7,14, 21, 28, 35, and 42 days. Before the treatment, expression levels of the selected miRs were measured in the liver, the duodenum, the jejunum, and the ascending and the descending colon of the gilts. Hierarchical clustering of the tissues by their miR expression profiles was consistent with what would be expected based on the anatomical locations and the physiological functions of the organs, suggesting that functions of the miRs are related to the specificities of the tissues in which they are expressed. A subset of 2 pairs of miRs (miR-21+miR-192 and miR-15a+miR-34a), which were assigned to two distinct clusters based on their tissue abundance, was then evaluated in the liver and the ascending and the descending colon during the treatment. The most meaningful results were obtained from the ascending colon, where a significant effect of the treatment was observed, suggesting that during the exposure to mycotoxins, the pathways involved in cell proliferation and survival were disordered. Changes in miR expression in the liver and the descending colon of the treated gilts were smaller, and were associated more with treatment duration than the exposure to ZEN, DON, or ZEN+DON. Further research should focus on identification of genes whose expression is regulated by these aberrantly expressed miRs. This should facilitate understanding of the miRNA-regulated biological effects of mycotoxins.
The aim of the study was to determine the impact of feed supplemented with specific amounts of zearalenone and chemical destructor (sodium carbonate) being under research on morphology of the selected organs of the gastrointestinal tract in pigs. The conducted research showed that zearalenone (ZEA) damaged the mucous membrane of the stomach, the small intestines and hepatocytes. The addition of sodium carbonate decreases the intensification of the lesions within the gastrointestinal tract, though it does not eliminate them. The administration of the xenobiotic by itself did not impair the gastrointestinal tract in pigs. Hence it may be useful as a prophylactic tool in the prevention of zearalenone mycotoxicosis
Contamination of feed with zearalenone (ZEA) is still a serious problem in farm animals feeding, especially in gilts, sensitive to this compound. The relative failure of current methods of decontamination and quality control lead us to look for new techniques. The commonly accepted method for breaking down ZEA was performed in controlled temperature and time conditions. Various sodium carbonate doses (0.5 – 4%) were added to feed naturally contaminated with ZEA (ZEA biosynthesis by F. graminearum isolates). These doses were found to be effective in in vitro studies. The addition of 2% sodium carbonate gave the best results in reducing the phytoestrogen in the feed.
Zearalenone is a mycotoxin widely occurring in cereals and animal feed, and it is associated with hyperestrogenism and other reprodutive disorders in animals. A new method of detoxication of feed- stuffs involves alkaline hydrolysis of toxic macrolactone (1) (as well as model compounds (2a, 2b)). The method caused modification of zearalenone structure under mild conditions and the toxin underwent irreversible hydrolysis with high efficiency.
Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the sterol biosynthesis pathway. Statin therapy is commonly regarded as well tolerated. However, serious adverse effects have also been reported, especially during high-dose statin therapy. The aim of our study was to investigate the effect of statins on gene expression profiles in human hepatoma HepG2 cells using Affymetrix Human Genome U133 Plus 2.0 arrays. Expression of 102, 857 and 1091 genes was changed substantially in HepG2 cells treated with simvastatin, fluvastatin and atorvastatin, respectively. Pathway and gene ontology analysis showed that many of the genes with changed expression levels were involved in a broad range of metabolic processes. The presented data clearly indicate substantial differences between the tested statins.
Zearalenone (ZEA) is a member of macrocyclic lactons family. It is a toxin - phytosteride produced by fungi of Fusarium ssp. genus. Zearalenone contaminates food and animal feeding stuffs and its destruction is difficult. It requires application of particular compounds that would bind zearalenone in the feed or feeding stuff or in the gastrointestinal tract and decrease its bio-accessibility. It should also fulfil all the safety requirements regarding the plant supplements and animals that are fed with this feed. The aim of the study was to estimate if the feed supplemented with different doses of zearalenone and zearalenone destructor causes changes of the metabolic profile in gilts. The results obtained show that applied destructor did not cause negative haematological and biochemical changes in the blood of the gilts examined. It can be suggested that it is a safe feed supplement pigs in prevention of zearalenone micotoxicosis.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.