PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 07 | 2 |

Tytuł artykułu

Comparison of the growth of Lactobacillus acidophilus and Bifidobacterium bifidum species in media supplemented with selected saccharides including prebiotics

Warianty tytułu

PL
Porownanie wzrostu bakterii z gatunku Lactobacillus acidophilus i Bifidobacterium bifidum na podlozach z dodatkiem wybranych sacharydow w tym prebiotykow

Języki publikacji

EN

Abstrakty

EN
The performed investigations evaluated the growth dynamics of Lactobacillus acidophilus DSM 20079, Lactobacillus acidophilus DSM 20242, Bifidobacterium bifidum DSM 20082, Bifidobacterium bifidum DSM 20215, Bifidobacterium bifidum DSM 20239, Bifidobacterium bifidum DSM 20456 in media supplemented with various saccharides, including prebiotic preparations. The addition of saccharides to the medium exerted a significant influence not only on the number of bacterial cells but also on their acid-creating capability. Glucose, lactose and saccharose tumed out to be the easiest available saccharides for all the bacterial strains tested. In the media supplemented with these sugars the highest numbers of bacterial cells were determined. At the shortage of mono- and disaccharides, all strains of the bacteria tested were capable of utilising the prebiotic preparations as sources of carbon and energy in the media. The amount and isomeric forms of lactic acid produced by Lactobacillus acidophilus DSM 20079 and Bifidobacterium bifidum DSM 20239 were determined. Both strains meet the reąuirements adopted by the WHO and produce more than 70% lactic acid L(+) in the media with the addition of various saccharides. Lactobacillus acidophilus DSM 20079 was found to produce significantly higher amount of lactic acid in different media.
PL
W pracy podjęto badania nad dynamiką wzrostu bakterii Lactobacillus acidophilus DSM 20079, Lactobacillus acidophilus DSM 20242, Bifidobacterium bifidum DSM 20082, Bifidobacterium bifidum DSM 20215, Bifidobacterium bifidum DSM 20239, Bifidobacterium bifidum DSM 20456 w podłożach z dodatkiem różnych sacharydów, w tym preparatów prebiotycznych. Dodatek sacharydów do podłoża znacząco wpłynął zarówno na liczbę komórek bakterii, jak i ich zdolność kwasotwórczą. Najłatwiej dostępnymi sacharydami dla wszystkich testowanych szczepów okazały się: glukoza, laktoza i sacharoza i to w podłożu z dodatkiem tych właśnie cukrów oznaczano najwyższą liczbę komórek bakterii. Przy deficycie mono- i disacharydów wszystkie szczepy testowanych bakterii były zdolne do wykorzystania preparatów prebiotycznych jako źródeł węgla i energii w pożywkach. Oznaczono ilość i formy izomeryczne produkowanego kwasu mlekowego przez Lactobacillus acidophilus DSM 20079 i Bifidobacterium bifidum DSM 20239. Obydwa szczepy spełniają wymagania stawiane przez WHO, produkując powyżej 70% kwasu mlekowego L(+) w podłożach z dodatkiem różnych sacharydów. Istotnie wyższe ilości kwasu mlekowego na różnych podłożach produkuje szczep Lactobacillus acidophilus DSM 20079.

Wydawca

-

Rocznik

Tom

07

Numer

2

Opis fizyczny

p.5-20,fig.,ref.

Twórcy

autor
  • University of Life Sciences in Poznan, Wojska Polskiego 31, 60-624 Poznan, Poland
autor
autor

Bibliografia

  • Alander M., Mättö J., Kneifel W., Johansson M., Kögler B., Crittenden R., Mattila-Sandholm T., Saarela M., 2001. Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract. Int. Dairy J. 11, 817-825.
  • Aranachalam K.D., 1999. Role of Bifidobacteria in nutrition, medicine and technology. Nutr. Res. 19(10), 1559-1597.
  • Bali G.F.M., 1990. The application of HPLC to the determination of Iow molecular weight sugars and polyhydric alcohols in foods: a review. Food Chem. 35, 117-152.
  • Biedrzycka E., Bielecka M., 2004. Prebiotic effectiveness of fructans of different degrees of polymerization. Trends Food Sci. Technol. 15, 170-175.
  • Bielecka M., Biedrzycka E., Majkowska A., Juśkiewicz J., Wróblewska M., 2002. Effect of nondigestible oligosaccharides on gut microecosystem in rats. Food Res. Inter. 35, 139-144.
  • Biesalski H. 1999. Probiotika und Prebiotika. Emahrungsmedizin 11, 398-402.
  • Biorad 1994. Guide to Aminex HPLC columns for food and beverage biotechnology, and bioorganic analysis. Bulletin 1928 US/EG REVA 94-0596 0994 SIG 071494. USA.
  • Blaut M., 2002. Relationship of prebiotics and food to intestinal microflora. European J. Nutr. 41 Suppl. 1, 11-16.
  • Bruno F.A., Lankaputhra W.E.V., Shah N., 2002. Growth, viability and activity of Bfidobacterium spp. in skim milk containing prebiotics. J. Food Sci. 67 (7), 2740-2744.
  • Cherbut C., 2002. Inulin and oligoffuctose in the dietary fibre concept. Brit. J. Nutr. 87 Suppl. 2, S159-S162.
  • Chick H., Shin H.S., Ustunol Z., 2001. Growth and acid production by lactic acid bacteria and Bifidobacteria grown in skim milk containing honey. J. Food Sci. 66 (3), 478-481.
  • Cummings J.H., MacFarlane G.T., 2002. Gastrointestinal effects of prebiotics. Brit. J. Nutr. 87 Suppl. 2, S145-S151.
  • Doleyres Y., Lacroix C., 2005. Technologies with free and immobilized cells for probiotic bifidobacteria production and protection. Inter. Daily J. 15, 973-978.
  • Fooks L.J., Fuller R., Gibson G.R., 1999. Prebiotics, probiotics and human gut microbiology. Inter. Dairy J. 9, 53-61.
  • De Vuyst L., 2002. Inhibitory effects of probiotic lactic acid bacteria. Probiotics-Accompanying Measure: Flair-Flow Europe IV, Cracow, Poland, 28-32.
  • Gomes A.M.P., Malcata F.X., 1999. Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 10, 139-157.
  • Gopal A., Shah N. P., Rogiński H., 1996. Bile tolerance, taurocholate and cholesterol removal by Lactobacillus acidophilus and Bifidobacterium spp. Milchwissenschaft 51 (11), 619-622.
  • Gopal P.K., Sullivan P.A., Smart J.B., 2001. Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR 10 and Lactobacillus rhamnosus DR20. Int. Dairy J. 11, 19-25.
  • Grzybowski R.A., Stecka K.M., Szkudzińska-Rzeszowiak E.A., Milewski J., Chabłowska B., Brzóska F., Strzetelski J., Urbańczyk J., 1997. Assessment criterial and selection of microorganisms as components of probiotic preparations. Papers Res. Ins. Labor. Food Ind. 52, 5-30 [in Polish].
  • Klaenhammer T.R., 1995. Genetics of intestinal Lactobacilli. Int. Dairy J. 5, 1019-1058.
  • Kneifel W., Rajal A., Kulbe K.D., 2000. In vitro growth behavior of probiotic bacteria in culture media with carbohydrates of prebiotic importance. Micr. Ecol. Health Dis. 12, 27-34.
  • Losada M.A., Olleros T., 2002. Towards a healthier diet for the colon: the influence of fructooligosaccharides and lactobacilli on intestinal health. Nutr. Res. 22, 71-84.
  • Martinez-Villaluenga C., Frias J., Gómez R., Vidal-Valverde C., 2006. Influence of addition of raffinose family oligoaccharides on probiotic survival in fermented milk during refrigerated storage. Int. Dairy J. 16, 768-774.
  • Matteuzi D., Swennen E., Rossi M., Hartman T., Lebet V., 2004. Prebiotic effects of a wheat germ preperation in human healthy subjects. Food Microbiol. 21, 119-124.
  • Mattila-Sandholm T., Myllarinen P., Crittenden R., Mogensen G., Fonden R., Saarela M., 2002. Technological challenges for future probiotic foods. Int. Dairy J. 12, 173-182.
  • Mayer Á., Rezessy-Szabó J., Bognár Cs., Hoschke Á., 2003. Research for creation of functional foods with Bifidobacteria. Acta Aliment. 32 (1), 27-39.
  • Maxwell F.J., Duncan S.H., Hołd G., Stewart C.S., 2004. Isolation, growth on prebiotics and probiotic potencial of novel bifidobacteria from pigs. Anaerobe 10, 33-39.
  • Mountzouris K.C., McCartney A.L., Gibson G.R., 2002. Intestinal microflora of human infants and current trends for its nutritional modulation. J. Food Nutr. 87, 405-420.
  • Ouwehand A.C., Derrien M., De Vos W., Tiihonen K., Rautonen N., 2005. Prebiotics and other microbial substrates for gut functionality. Curr. Opinion Biot. 16, 212-217.
  • Pennacchia C., Vaughan E.E., Villani F., 2006. Potential probiotic Lactobacillus strains from fermented sausages: Further investigations of their probiotic properties. Meat Sci. 73, 90-101.
  • Rada V., Bartoňová J., Vlková E., 2002. Specific growth rate of Bifidobacteria cultured on different sugars. Folia Microb. 47 (5), 477-480.
  • Rastall R.A., Maitin V., 2002. Prebiotics and synbiotics: towards the next generation. Cur. Opinion Biot. 13, 90-496.
  • Roberfroid M.B., 1998. Prebiotics and synbiotics: concepts and nutritional properties. Brit. J. Nutr. 80: Suppl. 2, S197-S202.
  • Roberfroid M.B., 2000. Chicory fructooligosaccharides and the gastrointestinal tract. Nutr. 16 (7/8), 677-679.
  • Roberfroid M., 2002. Functional foods: concepts and application to inulin and oligofructose. Brit J. Nutr. 87 Suppl. 2, S139-S143.
  • Roberfroid M., Van Loo J., Gibson G., 1998. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 128 (1), 11-18.
  • Saarela M., Hallamaa K., Mattila-Sandholm T., Mättö J., 2003. The effect of lactose derivatives lactulose, lactitol and lactobionic acid on the functional and technological properties of potentially probiotic Lactobacillus strains. Int. Dairy J. 13, 291-302.
  • Scantlebury Manning T., Gibson G.R., 2004. Prebiotics. Best Prac. Res. Clinical Gastr. 18 (2), 287.
  • Schlegel H.G., 2000. Mikrobiologia ogólna [General microbiology]. PWN Warszawa [in Polish].
  • Shin H.S., Ustunol Z., 2005. Carbohydrate composition of honey from different flora sources and their influence on growth of selected intestinal bacteria: An in vitro comparison. Food Res. Int. 38, 721-728.
  • Śliżewska K., Libudzisz Z., 2001. Forma optyczna kwasu mlekowego tworzona przez bakterie z rodzaju Lactobacillus w podłożu zawierającym różne źródło węgla [The isomeric form of lactic acid bacteria produced by Lactobacillus bacteria in medium containing different sources of carbon], Żywn. Nauka Techn. Jakość 3 (28) Suppl., 99-106 [in Polish].
  • Tannock G.W., 2002. Prebiotics and prebiotics: Where are we going? Inter. J. Food Microb. 4, 75-79.
  • Tuohy K.M., Probert H.M., Smejkal C.W., Gibson G.R., 2003 Using prebiotics and prebiotics to improve gut health. DDT 8 (15), 692-700.
  • Ustunal Z., Gandhi H., 2001 Growth and viability of commercial Bifidobacterium spp. in honey-sweetened skim milk. J. Food Prot. 64 (11), 1775-1779.
  • Weststrate J.A., Van Popel G., Verschuren P.M., 2002. Functional foods, trends and future. Brit. J. Nutr. 88 Suppl. 2, S233-S235.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-45919aad-dbe3-4d9a-99c0-f10d98a864c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.