PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 162 | 06 |

Tytuł artykułu

Wpływ nanocząstek srebra i miedzi na wzrost i ograniczanie pasożytniczej zgorzeli siewek sosny zwyczajnej (Pinus sylvestris L.) w szkółce Nadleśnictwa Spychowo

Treść / Zawartość

Warianty tytułu

EN
Effect of silver and copper nanoparticles on growth and the control of damping-off disease in Scots pine (Pinus sylvestris L.) in the nursery of Spychowo Forest District

Języki publikacji

PL

Abstrakty

EN
Nanoparticles are gaining ever−wider application in plant production (for both agriculture and forestry), in the role of pesticides, as well as stimulators of plant growth and resistance. We sought to determine the efficacy of silver and copper nanoparticles (AgNPs and CuNPs respectively), used as seed dressings or subjected to foliar application, in affording protection from parasitic damping−off disease among soil−grown seedlings of Scots pine in a forest nursery. Experiments also assessed the influence of the nanoparticles on the growth of the plants potentially safeguarded in this way. Nanoparticles were used in seed soaking and foliar spraying at 50 ppm concentration. Pines treated with fungicides (Zaprawa Nasienna T 75 DS, Acrobat MZ 69 WG, Topsin M 500 SC, Gwarant 500 SC, Thiram Granuflo 80 WG and Signum 33 WG) or unprotected at all were used for comparison. In each treatment (AgNPs, CuNPs, fungicides or unprotected), seedlings were inventoried 6 weeks after the sowing and at the end of the growing season, while all individuals on 80 1−m−long segments of seed row were counted. At the end of the growing season, shoot length, root−collar diameter, root length and dry mass of shoots and roots were determined. The seedlings treated with nanoparticles had longer root systems of greater dry mass, but also only more weakly−developed above−ground parts (both height and dry mass being limited) in comparison with young Scots pines that had been fungicide−treated or were unprotected. It resulted in a significantly more favourable ratio between shoot and root masses, where nanoparticle treatment had been applied. The effectiveness of the protection extended to the germination and first−growth stages up to 6 weeks from the time of sowing was furthermore shown to be greatest where AgNPs had been applied, while at the season end there were comparable results among pines treated with either nanoparticles or fungicides. Our results thus indicate that nanoparticles limit damping−off disease in pine seedlings (AgNPs more effectively than CuNPs), with that effectiveness also proving comparable with that noted for the fungicides applied traditionally.

Wydawca

-

Czasopismo

Rocznik

Tom

162

Numer

06

Opis fizyczny

s.490-498,rys.,tab.,bibliogr.

Twórcy

  • Katedra Ochrony Lasu i Ekologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
  • Katedra Ochrony Lasu i Ekologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
autor
  • Katedra Ochrony Lasu i Ekologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa
autor
  • Nadleśnictwo Spychowo, ul.Mazurska 3, 12-150 Spychowo
autor
  • Katedra Doświadczalnictwa i Bioinformatyki, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa

Bibliografia

  • Aleksandrowicz-Trzcińska M. 2002. Wpływ fungicydów na wzrost i kolonizację mikoryzową sadzonek sosny zwy-czajnej (Pinus sylvestris L.) hodowanych w kontenerach. Rozprawy Naukowe i Monografie. Wydawnictwo SGGW, Warszawa.
  • Alghuthaymi M. A., Almoammar H., Rai M., Said-Galiev E., Abd-Elsalam K. A. 2015. Myconanoparticles: synthesis and their role in phytopathogen management. Biotechnology and Biotechnological Equipment 29 (2): 221-236.
  • Ball P. 2002. Natural strategies for the molecular engineer. Nanotechnology 13: 15-28.
  • Bernhardt E. S., Colman B. P., Hochella M. F., Cardinale B. J., Nisbet M., Richardson C. J., Yin L. 2010. An ecological perspective on nanomaterial impacts in the environment. Journal of Environmental Quality 39: 1-12.
  • Dimkpa C. O., McLean J. E., Latta D. E., Manangón E., Britt W. D., Johnson W. P., Boyanov M. I., Anderson A. L. 2012. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Resesearch 14: 1125.
  • Giannousi K., Avramidis I., Dendrinou-Samara C. 2013. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances 3 (44): 21743-21752.
  • Goffeau A. 2008. Drug resistance: The fight against fungi. Nature 452: 541-542.
  • Gorzelak A. 1986. Badania warunków wzrostu i produkcji siewek niektórych gatunków drzew leśnych w namiotach foliowych. Prace Instytutu Badawczego Leśnictwa 653: 3-84.
  • Hounam C. E., Burgos J. J., Kalik M. S., Palmer W. C., Rodda J. 1975. Drought and agriculture. Report of the Commission for Agricultural Meteorology Working Group on Assessment of Drought. Technical Note No. 138. World Meteorological Organization, Geneva, Switzerland.
  • Jaberzadeh A., Moaveni P., Tohidi Moghadam H. R., Zahedi H. 2013. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41 (1): 201-207.
  • Jo Y.-K., Kim B. H., Jung G. 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease 93: 1037-1043.
  • Jośko I., Oleszczuk P. 2013. Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92: 91-99.
  • Kasprowicz M. J., Kozioł M., Gorczyca A. 2010. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Canadian Journal of Microbiology 56: 247-253.
  • Khodakovskaya M. V., Kim B. S., Kim J. N., Alimohammadi M., Dervishi E., Mustafa T., Cernigla C. E. 2013. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9 (1): 115-123.
  • Klaine S. J., Alvarez P. J. J., Batley G. E., Fernandes T. F., Handy R. D., Lyon D. Y., Mahendra S., McLaughlin M. J., Lead J. R. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry 27 (9): 1825-1851.
  • Kwaśna H., Bateman G. L. 2009. Microbial communities in roots of Pinus sylvestris seedlings with damping-off symptoms in two nurseries as determined by ITS1/2 rDNA sequencing. Forest Pathology 39: 239-248.
  • Lamsal K., Kim S. W., Jung J. H., Kim Y. S., Kim K. S., Lee Y. S. 2011a. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39 (1): 26-32.
  • Lamsal K., Kim S. W., Jung J. H., Kim Y. S., Kim K. S., Lee Y. S. 2011b. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in the field. Mycobiology 39 (3): 194-199.
  • Lazreg F., Belabid L., Sanchez J., Gallego E., Bayaa B. 2014. Pathogenicity of Fusarium spp. associated with diseases of Aleppo-pine seedlings in Algerian forest nurseries. Journal of Forest Science 60 (3): 115-120.
  • Linglan M., Chao L., Chunxiang Q., Sitao Y., Jie L., Fengqing G., Fashui H. 2008. Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biological Trace Element Research 122 (2): 168-178.
  • Mahdizadeh V., Safaie N., Khelghatibana F. 2015. Evaluation of antifungal activity of sliver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. Journal of Crop Protection 4 (3): 291-300.
  • de Martonne E. 1926. Une nouvelle fanction climatologique: L’indice d’aridité. La Météoroligie 2: 449-458.
  • Min J. S., Kim K. S., Kim S. W., Jung J. H., Lamsal K., Kim S. B., Jung M., Lee Y. S. 2009. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. The Plant Pathology Journal 25 (4): 376-380.
  • Monica C. R., Cremoni R. 2009. Nanoparticles and higher plants. Caryologia 62 (2): 161-165
  • Nair P. M. G., Chung I. M. 2014. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biological Trace Element Research 162: 342-352.
  • Nel A., XiaT., Mädler L., Li N. 2006. Toxic potential of materials at the nanolevel. Science 311: 622-627.
  • Olchowik J., Bzdyk R., Studnicki M., Bednarska-Błaszczyk M., Urban A., Aleksandrowicz-Trzcińska M. 2017. The effects of silver and copper nanoparticles on the condition of English oak (Quercus robur L.) seedlings in a container nursery experiment. Forests 8 (9): 310.
  • Prasad T. N. V. K. V., Sudhakar P., Sreenivasulu Y., Latha P., Munaswamy V., Raja Reddy K., Sreeprasad T. S., Sajanlal P. R., Pradeep T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35 (6): 905-927.
  • Raliya R., Tarafdar J. C. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agricultural Research 2 (1): 48-57.
  • Rizwan M., Ali S., Qayyum M. F., Ok Y. S., Adrees M., Ibrahim M., Zia-Ur-Rehman M., Farid M., Abbas F. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials 322: 2-16.
  • Roco M. C. 2003. Broader societal issues of nanotechnology. Journal of Nanoparticle Research 5: 181-189.
  • Salerno M. I., Lori G. A. 2007. Association of seed-borne Fusarium species on Pinus ponderosa with germination and seedling viability in Argentina. Forest Pathology 37: 263-271.
  • Seeger E. M., Baun A., Kästner M., Trapp S. 2009. Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments 9: 46-53.
  • Servin A., Elmer W., Mukherjee A., De la Torre-Roche R., Hamidi H., White J. C., Bindraban P., Dimkpa C. 2015. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research 17: 92.
  • Shaw A. K., Hossain Z. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93: 906-915.
  • Sweet M. J., Singleton I. 2015. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots. Journal of Nanoparticle Research 17: 448.
  • Tarafdar J. C., Raliya R., Mahawar H., Rathore I. 2014. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research 3 (3): 257-262.
  • Vannini C., Domingo G., Onelli E., De Mattia F., Bruni I., Marsoni M., Bracale M. 2014. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. Journal of Plant Physiology 171: 1142-1148.
  • Zarafshar M., Akbarinia M., Askari H., Hossein S. M., Rahaie M., Struve D. 2015. Toxicity Assessment of SiO2 nanoparticles to pear seedlings. International Journal of Nanoscience and Nanotechnoogy 11 (1): 13-22.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-47887e2e-866d-45e1-9b65-55be458e10aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.