EN
Although diversity-ecosystem theory predicts that ecosystem functioning is strongly determined by species number, species traits play an important role in regulating ecosystem-level dynamics. We analyze responses of species attributes to diversity level and resource availability, and explore their consequences for ecosystem functioning and ultimately assess the contributions of five traits (vegetative plant height, clonal growth, root depth, cespitose habit and seed mass) to ecosystem functioning defined by spatial stability of community biomass. We found that functional traits disproportionately affected spatial stability. Relationships between species functional traits and spatial stability of community biomass indicated that diversity of vegetative plant height facilitated stability of a nitrogen fertilized undisturbed natural community (NAT), and that of a phosphorus fertilized forb, legume and bunchgrass community (FLB). The clonal growth form was also identified as a stabilizing trigger for a unfertilized undisturbed natural community (NAT), whereas diversity in root depth, cespitose habit and seed mass were related to destabilization of a nitrogen fertilized rhizomatous grass community (RRR). Studies quantifying interactions among plant traits, community structure and ecological functioning will contribute much more to understanding of the effects of the ecological behavior of specific traits on the ecosystem functioning.