Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  remodelling
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
Content available remote

Apoptosis and autophagy in mammary gland remodeling and breast cancer chemotherapy

100%
Apoptosis – programmed cell death (PCD) type I is physiological process responsible for cell loss during mammary gland involution after natural weaning or litter removal in rodents, after weaning in sow and during drying off in goat and cow. The regulation of mammary epithelial cell (MEC) apoptosis in bovine mammary gland occurs at three levels. The first level comprises intracellular regulatory proteins, e.g. Bcl-2 family death promoters and inhibitors. The second level is represented by intramammary inductors of apoptosis, e.g. FIL, IGFBPs, Fas ligand, TGF-ßs. The expression and activity of these auto/paracrine inductors of apoptosis is controlled and modulated by the third level factors, e.g. systemic galactopoetic hormones, nutrition, reproductive status and milking management. Our recent study proved that apoptosis in involuting bovine mammary gland is accompanied by increased intensity of autophagy, regarded as a cytoprotective process but in advanced stage as a PCD type II. Moreover, we have reported for the first time the ability of TGF-ß1 to induce both apoptosis and autophagy in bovine BME-UV1 MEC. Much more pronounced heterogenity of PCD was observed when breast cancer cells were exposed to anticancer drugs. The primary responses of breast cancer MCF-7 cells to camptothecin (CPT) are apoptosis and autophagy (as a cytoprotective process). In this case autophagy occurs in cells which are resistant to apoptosis as a tool of cancer cell survival. The fail-safe responses of breast cancer cells to persisting CPT-induced stress are apoptosis accompanied by morphological and biochemical features of autophagy or type II PCD with advanced subcellular degradation. The threshold between autophagy as a cytoprotective process (reversible) or PCD (irreversible) is difficult to establish and probably depends on the extent of degradation of cellular components. Proapoptotic protein Bid may serve as a molecular switch between apoptosis and autophagy. Bid knock down in MCF-7 cells exposed to CPT leads to a shift of cell death from apoptosis to autophagy. Since bid and other proapoptotic genes undergo mutations in malignant cells, the ability of cancer cells commitment to autophagy may have important therapeutic implications.
SDF-1, a chemokine secreted by injured tissues, may be instrumental in chemoattracting CXCR4+ stem cells (SCs) for repair of infarcted myocardium. We hypothesize that the myocardial SDF-1 expression determines also the engraftment and beneficial effects of SCs transplanted into the infarcted heart. Myocardial infarction (MI) was induced in rats by coronary artery ligation. The animals were either sacrificed at 2, 7, 16, 21 or 28 days after MI or were re-operated at 2, 7 or 14 days after MI to receive SCs transplantation, and were sacrificed 14 days later. SCs transplantation consisted of 3 x 15 µl injections of SCs isolated from foetal rat liver (FLSCs) into the myocardium bordering the infarction zone (5 x 106 cells/heart, labelled with PKH2 Green Fluorescent Cell Linker, ~20% CXCR4+). In the MI border zone, SDF-1 and CXCR4 immunostaining was transiently increased after MI, picking at 2 days and down regulating to the sham level by 21 days after MI. Simultaneously, an increased incorporation of CXCR4+ and CD133+ cells into capillaries was evident. AMD1300, a blocker of CXCR4, prevented the post-MI expression of CXCR4. In the MI border zone, the cardiomyocyte cross-sectional diameter increased and capillary/cardiomyocyte ratio decreased systematically during the 28 post-MI days, while an interstitial collagen accumulation demonstrated transient increase. FLSCs did not survive in the non-infarcted hearts. In infarcted hearts, FLSCs survived best when they were injected at 2 days after MI. The survival was negligible again when the injection was performed at 14 days after MI. FLSCs transplanted at 2 days after MI caused a further rise in SDF-1, CXCR4, and CD133 expression, compared with the untreated infarcted hearts. Only FLSCs transplanted at 2 days, but not later, attenuated cardiomyocyte hypertrophy and increased capillary/cardiomyocyte ratio in the MI border zone. These results suggest that myocardial signalling for homing of the endogenous and the exogenous SCs is transiently activated early after MI, that SDF-1 is instrumental in this process, and that there is only a narrow time-window after MI when SCs transplantation results in their efficient myocardial engraftment and beneficial anti-remodelling effect.
11
80%
Clinical data suggest an association of increased serum androgens with cardiovascular mortality in females, but not in males. Therefore, we examined effects of chronic anabolic testosterone administration on left ventricular remodeling after myocardial infarction in female rats. Ovariectomized adult female rats were treated with placebo, supraphysiologic testosterone undecanoate (T), estradiol (E2), or T+E2. Two weeks after ovarcectomy, animals underwent sham-operation or coronary artery ligation. Left ventricular remodeling and function were assessed by echocardiography and hemodynamic investigation. In sham operated animals T administration increased serum T levels and led to cardiac hypertrophy, with an increase in the ß/alpha-MHC-ratio and in IGF-1 expression. After coronary artery ligation, infarct size and mortality were similar among the groups. T treatment aggravated left ventricular hypertrophy and chamber dilatation (end-diastolic diameter, E2 vs. T vs. E2+T, 8.6 ± 0.6 vs. 9.9 ± 0.3 vs. 9.8 ± 0.3 mm, p<0.05) and reduced fractional shortening 8 weeks after myocardial infarction. Extracellular matrix remodeling was not altered by hormonal treatment. In conclusion, chronic anabolic T treatment causes myocardial hypertrophy under basal conditions and adversely affects left ventricular remodeling following myocardial infarction in female rats.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.