Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  intestinal bacteria
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The domination of microorganisms characterized by excessive activity of the so-called fecal enzymes may be one of the reasons of the large intestine cancers. These enzymes are mainly those that belong to the hydrolase and reductase classes and their excessive activity may lead to disorders in the functioning of the digestive tract. The aim of tise research was to determine the activity of β-glucuronidase and β-glucosidase of Lactobacillus and Enterococcus strains isolated from the feces of healthy children, aged 1 and 8, and adults, aged 30 and.80. The analysis included 10 strains isolated from the feces of individuals in each of the age groups. β-glucuronidase activity in the case of the isolates from children, depending on the strain, equaled from about 0.15 mM/h/mg of protein to 0.26 mM/h/mg of protein and was lower, respectively, by 52.35% and 57.81%, than the β-glucosidase activity. Simultaneously, the activity of the Lactobacillus enzymes from children was 2.4 times higher, and in case of the isolates obtained from adults they were 4.6 and 2.7 times higher than the activity of the Enterococcus enzymes. The highest β-glucuronidase activity was observed in Lactobacillus isolates coming from an 80-year-old subject. The differences between the activity of Enterococcus β-glucuronidase isolated from the feces of 1 and 8 year old children were statistically insignificant. On the other hand, in the case of the subjects aged 30 and 8 the isolates were characterized by activity lower by, respectively. 48% and 37% than the isolates coming from children. The highest β-glucosidase activity was discovered in the case of Lactobacillus and Enterococcus coming from children, which was higher by 32% than the activity of the isolates from adult persons. Therefore, it was determined that the activity of β-glucuronidase of Lactobacillus strains isolated from feces from people aged 80 was the highest, and the isolates of the examined microorganisms coming from children were characterized by the highest β-glucosidase activity.
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for their anti-inflammatory, analgesic and antipyretic effects, however their use is associated with the broad spectrum of side effects observed in human as well as the experimental animals. Despite damaging activity of NSAIDs in upper gastrointestinal (GI) tract, these drugs exert deleterious influence in lower GI tract, including colon. The role of GI microflora in the pathogenesis of NSAIDs-induced experimental colonic damage is not completely understood. The aim of this study was 1) to evaluate the relative importance of the GI microflora on the experimental colonic damage in the presence of caused by NSAID, and 2) to assess the efficacy of antibiotic treatment with ampicillin on the process of healing of colitis. We compared the effect of vehicle, ASA applied 40 mg/kg intragastrically (i.g.) or the selective cyclooxygenase (COX)-2 inhibitor, celecoxib (25 mg/kg i.g.) without or with ampicillin treatment (800 mg/kg i.g.) administered throughout the period of 10 days, on the intensity of TNBS-induced colitis in rats. The severity of colonic damage, the alterations in the colonic blood flow (CBF) and myeloperoxidase (MPO) activity, the mucosal expression of TNF-, IL-1ß, COX-2, VEGF and iNOS and the plasma concentration of TNF- and IL-1ß were assessed. In all rats, the faeces samples as well as those from the colonic mucosa, blood, liver and spleen underwent microbiological evaluation for intestinal bacterial species including Escherichia coli and Enterococcus spp. The administration of TNBS resulted in macroscopic and microscopic lesions accompanied by the significant fall in the CBF, an increase in tissue weight and 4-5-fold rise in the MPO activity and a significant increase in the plasma IL-1ß and TNF- levels. ASA or celecoxib significantly increased the area of colonic lesions, enhanced MPO activity and caused the marked increase in colonic tissue weight and plasma IL-1ß and TNF- levels, as well as an overexpression of mRNA for IL-1ß and TNF-, COX-2, VEGF and iNOS in the colonic tissue. ASA and coxib also resulted also in a significant increase of E. coli counts in the stool at day 3 and day 10 day of the observation compared with the intact rats. Moreover, E. coli translocation from the colon to the blood and extraintestinal organs such as liver and spleen in the group of rats treated without or with ASA and coxib. E. coli was the most common bacteria isolated from these organs. Treatment with ampicillin significantly attenuated the ASA- or celecoxib-induced increase in plasma levels of IL-1ß and TNF- and suppressed the mucosal mRNA expression for IL-1ß and TNF-ß, COX-2, iNOS and VEGF in the colonic mucosa. Ampicillin administration caused a significant fall in the number of E. coli in the faeces at day 3 and day 10 of observation in ASA- and coxib-treated rats with colitis. Antibiotic therapy markedly reduced bacterial translocation to the colonic tissue and the extraintestinal organs such as the liver and spleen. We conclude that administration of ASA and to lesser extent of celecoxib, delays the healing of experimental colitis and enhances the alterations in colonic blood flow, proinflammatory markers such as IL-1ß, TNF-, COX-2, iNOS and VEGF and increased intestinal mucosal permeability resulting in the intestinal bacterial translocation to the blood, spleen and liver. Antibiotic treatment with ampicillin is effective in the diminishing of the severity of colonic damage, counteracts both the NSAID-induced fall in colonic microcirculation and bacterial E.coli translocation to the extraintestinal organs.
In this study the effect of bean tempeh on the growth of Bacillus subtilis, Escherichia coli, Lactobacillus acidophilus and Lactobacillus paracasei bacteria was investigated. Antibacterial activity was observed only in relation to the bacteria Bacillus subtilis. The effect of tempeh products on human intestinal microflora was also assessed. Bean and soy tempeh were culinarily processed and next digested in conditions simulating the human digestive tract (one of the digestive tracts was equipped with a mechanism simulating absorption). Soy tempeh stimulated most the growth of bacteria of the genus Bifidobacterium, while bean tempeh that of Escherichia coli. Using simulation of absorption for the digestion of fried soy tempeh resulted in a higher rise in the bacteria count of the genus Lactobacillus, while after digestion of fried bean tempeh the highest increase was recorded for Bifidobacterium and E.coli.
Probiotics have antibacterial effects against pathogenic bacteria in the gut while maintaining the balance of intestinal flora such as Lactobacillus. This study aimed to evaluate the antimicrobial activity of four Lactobacillus species against intestinal pathogenic. Four different species of Lactobacillus (Lactobacillus bulgaricus (PTCC 1332), Lactobacillus casei (PTCC 1608), Lactobacillus plantarum (PTCC 1058) and Lactobacillus Fermentum (PTCC 1638)) were experimented to investigate the inhibitory activity against 4 bacterial enteric pathogens (Escherichia coli, Staphylococcus aureus, Shigella dysenteriae and Salmonella paratyphi A) which were separately inoculated in MRS medium (de Man, Rogosa and Sharpe medium) for 48 hours at 37 °C and pH 7. Our results showed that enteropathogens growth was stopped in the presence of all Lactobacillus and inhibition zone was between 12 and 32 millimeter. It can be concluded that these four Lactobacillus strains had potential antimicrobial compounds against human enteric pathogens and should be further studied for their human health benefits.
Celem badań było określenie wpływu inuliny (preparaty Raftiline ®) oraz fmktooligosacharydów (preparaty Raftilose ®) na poziom tworzonego kwasu mlekowego i jego izomerów, przez bakterie z rodzaju Lactobacillus. Kontrolne hodowle prowadzono w obecności monosacharydów (glukoza, galaktoza, fruktoza) oraz disacharydów (laktoza, sacharoza). Zawartość form optycznych kwasu mlekowego określono przy zastosowaniu testów enzymatycznych firmy Boehringer Mannheim. W wyniku przeprowadzonych badań stwierdzono, że ilość kwasu mlekowego wytworzonego przez bakterie z rodzaju Lactobacillus w pożywce MRS, zawierającej fruktooligosacharydy, wynosiła średnio 2,62 g/l i była znacznie niższa niż w pożywkach z mono- lub disacharydami (9,31 g/l). Średnia ilość L(+) kwasu mlekowego wyniosła od 0,70 g/l (w podłożu z Raftiline ® HP) do 7,69 g/l (w podłożu z glukozą). Stosunek izomeru L(+) do izomeru D(-) w przypadku hodowli z zastosowaniem fruktooligosacharydów wynosił średnio 3,11 a przy zastosowaniu cukrów prostych 3,14.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.