Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Paleogene
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A complete uppermost Maastrichtian–Danian succession in the Sumbar River section, western Kopet Dagh (southwest Turkmenistan, Central Asia), constitutes one of the few instances in the world where the fossil record of the last ammonites can be directly positioned with respect to the iridium−rich, impact−related clay layer, which defines the Cretaceous–Paleogene (K–Pg) boundary. Two ammonite taxa, Baculites cf. vertebralis and Hoploscaphites constrictus johnjagti, range up to a level directly beneath the K–Pg boundary clay in the Sumbar River section. Thus, these two forms probably survived until the very end of the Maastrichtian in the western Kopet Dagh area. The terminal Maastrichtian ammonite records from the Sumbar River area represent the southeasternmost occurrences of these essentially Boreal taxa.
A section containing the Cretaceous/Paleogene (= Cretaceous/Tertiary) boundary in Monmouth County, New Jersey, preserves a record of ammonites extending from the end of the Cretaceous into possibly the beginning of the Danian. The section includes the upper part of the Tinton Formation and lower part of the Hornerstown Formation. The top of the Tinton Formation is represented by a richly fossiliferous unit (the Pinna Layer) that contains many bivalves in life position as well as ammonite jaws preserved inside body chambers. Ammonites include Pachydiscus (Neodesmoceras) mokotibensis, Sphenodiscus lobatus, Eubaculites carinatus, E. latecarinatus, Discoscaphites iris, D. sphaeroidalis, D. minardi, and D. jerseyensis. The Pinna Layer probably represents a relatively short interval of time lasting tens to hundreds of years; it is conformably overlain by the Burrowed Unit, which contains a single fragment of Discoscaphites sp. and several fragments of E. latecarinatus, as well as several isolated specimens of ammonite jaws including two of Eubaculites. Examination of the mode of preservation of the ammonites and jaws suggests that they were fossilized during deposition of the Burrowed Unit and were not reworked from older deposits. Based on the ammonites and dinoflagellates in the Pinna Layer and the Burrowed Unit, these strata traditionally would be assigned to the uppermost Maastrichtian, corresponding to calcareous nannofossil Subzone CC26b. However, a weak iridium anomaly (500–600 pg/g) is present at the base of the Pinna Layer, which presumably represents the record of the bolide impact. Correlation with the iridium layer at the Global Stratotype Section and Point at El Kef, Tunisia, would, therefore, imply that these assemblages are actually Danian, provided that the iridium anomaly is in place and the ammonites and dinoflagellates are not reworked. If the iridium anomaly is in place, or even if it has migrated downward from the top of the Pinna Layer, the ammonites would have survived the impact at this site for a brief interval of time lasting from a few days to hundreds of years.
4
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

The last Cretaceous ammonites in Latin America

84%
Sections yielding late Maastrichtian ammonite assemblages are rare in Latin America and precise biostratigraphic correlation with European type sections remains difficult. In all, the extinction pattern of ammonites appears to differ between sites in southern high latitudes and those in the tropics to subtropics. In austral sections of Chile, and possibly also in southern Argentina, diverse assemblages range throughout most of the substage and then show a gradual decline prior to the Cretaceous–Paleogene (K–Pg) boundary. Further north, in northeast Brazil, only two genera (Diplomoceras, Pachydiscus) range into the uppermost Maastrichtian, but disappear within the last 0.3 Ma of the Cretaceous. In tropical sections of Columbia and Mexico, the decline of ammonites started earlier and Sphenodiscus is the last ammonite known to occur in the late Maastrichtian. In all sections revised here the disappearance of ammonites was completed prior to the end of the Maastrichtian and was thus independent of the asteroid impact at, or near, the end of the Cretaceous.
Multituberculates are the most diverse and best known group of Mesozoic mammals; they also persisted into the Paleogene and became extinct in the Eocene, possibly outcompeted by rodents that have similar morphological and presumably ecological adaptations. Among the Paleogene multituberculates, those that have the largest body sizes belong to taeniolabidoids, which contain several derived species from North America and Asia and some species with uncertain taxonomic positions. Of the known taeniolabidoids, the poorest known taxon is Sphenopsalis nobilis from Mongolia and Inner Mongolia, China, represented previously by a few isolated teeth. Its relationship with other multituberculates thus has remained unclear. Here we report new specimens of Sphenopsalis nobilis collected from the upper Paleocene of the Erlian Basin, Inner Mongolia, China, during a multi-year field effort beginning in 2000. These new specimens document substantial parts of the dental, partial cranial and postcranial morphologies of Sphenopsalis, including the upper and lower incisors, partial premolars, complete upper and lower molars, a partial rostrum, fragments of the skull roof, middle ear cavity, a partial scapula, and partial limb bones. With the new specimens we are able to present a detailed description of Sphenopsalis, comparisons among relevant taeniolabidoids, and brief phylogenetic analyses based on a dataset consisting of 43 taxa and 102 characters. In light of the new evidence, we assess the phylogenetic position of Sphenopsalis and re-establish the family Lambdopsalidae. The monophyly of Taeniolabidoidea is supported in all our phylogenetic analyses. Within Taeniolabidoidea the Asian lambdopsalids and the North American taeniolabidids represent two significantly different trends of adaptations, one characterized by shearing (lambdopsalids) and the other by crushing and grinding (taeniolabidids) in mastication, which supports their wider systematic separation, as speculated when Sphenopsalis was named.
In the light of integrated biostratigraphic and geochemical data, a complete shallow−marine succession across the Cretaceous–Palaeogene (K–Pg) boundary, with the critical boundary clay coupled with a burrowed siliceous chalk (“opoka” in Polish geological literature), possibly equivalent of the basal Danian Cerithium Limestone in Denmark, has been discovered at Lechówka near Chełm, SE Poland. An extraterrestrial signature marking the K–Pg boundary is confirmed by anomalously high amounts of iridium (up to 9.8 ppb) and other siderophile elements (especially Au and Ni), as well as by an elevated Ir/Au ratio consistent with a chondrite meteoritic composition. The major positive iridium spike surprisingly occurs in Maastrichtian marls, 10 cm below the boundary clay interval, which can be explained by diagenetic mobilisation and re−concentration of the impact−derived components. Thus, intensively infiltrating, humic acid−rich ground waters during the long−lasting Palaeogene weathering in tropical humid regimes were probably responsible not only for the large−scale decalcification of the Lechówka section, but also for both downward displaced position of the iridium enrichment, a dispersed profile of this anomaly and its significantly lessened value, but still approaching an increase by a factor of 100. This modified record of the K–Pg boundary event points to a careful reconsideration of the iridium anomaly as a trustworthy marker for studying the extinction patterns across the K–Pg boundary, as supported by the recent data from New Jersey, USA.
For the past three decades, the Alvarez impact theory of mass extinction, causally related to catastrophic meteorite impacts, has been recurrently applied to multiple extinction boundaries. However, these multidisciplinary research efforts across the globe have been largely unsuccessful to date, with one outstanding exception: the Cretaceous–Paleogene boundary. The unicausal impact scenario as a leading explanation, when applied to the complex fossil record, has resulted in force−fitting of data and interpretations (“great expectations syndrome”). The misunderstandings can be grouped at three successive levels of the testing process, and involve the unreflective application of the impact paradigm: (i) factual misidentification, i.e., an erroneous or indefinite recognition of the extraterrestrial record in sedimentological, physical and geochemical contexts, (ii) correlative misinterpretation of the adequately documented impact signals due to their incorrect dating, and (iii) causal overestimation when the proved impact characteristics are doubtful as a sufficient trigger of a contemporaneous global cosmic catastrophe. Examples of uncritical belief in the simple cause−effect scenario for the Frasnian–Famennian, Permian–Triassic, and Triassic–Jurassic (and the Eifelian–Givetian and Paleocene–Eocene as well) global events include mostly item−1 pitfalls (factual misidentification), with Ir enrichments and shocked minerals frequently misidentified. Therefore, these mass extinctions are still at the first test level, and only the F–F extinction is potentially seen in the context of item−2, the interpretative step, because of the possible causative link with the Siljan Ring crater (53 km in diameter). The erratically recognized cratering signature is often marked by large timing and size uncertainties, and item−3, the advanced causal inference, is in fact limited to clustered impacts that clearly predate major mass extinctions. The multi−impact lag−time pattern is particularly clear in the Late Triassic, when the largest (100 km diameter) Manicouagan crater was possibly concurrent with the end−Carnian extinction (or with the late Norian tetrapod turnover on an alternative time scale). The relatively small crater sizes and cratonic (crystalline rock basement) setting of these two craters further suggest the strongly insufficient extraterrestrial trigger of worldwide environmental traumas. However, to discuss the kill potential of impact events in a more robust fashion, their location and timing, vulnerability factors, especially target geology and palaeogeography in the context of associated climate−active volatile fluxes, should to be rigorously assessed. The current lack of conclusive impact evidence synchronous with most mass extinctions may still be somewhat misleading due to the predicted large set of undiscovered craters, particularly in light of the obscured record of oceanic impact events.
Near the end of the twentieth century, a medium−sized early proboscidean found in Dor El Talha (late Eocene to early Oligocene), Libya, originally identified as a small species of Barytherium, was described as a new species of Numidotherium and designated Numidotherium savagei. Poorly known, this taxon has been excluded from most of the recent debate about the origin and diversification of the order Proboscidea. New specimens described herein show strong structural similarities of the upper teeth with those of bunolophodont early proboscideans (e.g., Moeritherium and Phiomia) and document the shared presence of derived traits in the postcranial skeleton. The newly referred material also demonstrates some unique characteristics of this taxon, notably in its mandibular morphology and the microstructure of its dental enamel. Included for the first time in a cladistic analysis (207 anatomical characters applied to all early tethytheres), N. savagei is distinct from both Numidotherium and Barytherium, and lies in an “intermediate” position between the strictly lophodont Eocene proboscideans and the bunolophodont moeritheres and elephantiforms. Accordingly, the species is herein referred to a new genus, Arcanotherium. New data on its mandibular symphysis and, especially, on its lower incisors loci and morphology, bring new support to a hypothesis of homology between the lower incisors of early proboscideans and the ever−growing lower tusks of the elephantiforms, which are identified here as di1 and i1.
A tiny tarsioid primate occurs in early Eocene sediments of the Naran Bulak Formation, southern Gobi Desert, Mongolian People's Republic. The new primate, Altanius orlovi, new genus and species, is an anaptomorphine omomyid and therefore belongs to a primarily American group of primates. Altanius is apparently not a direct ancestor of the Asian genus Tarsius. American rather than European zoogeographic affinities are indicated, and this in turn supports the view that for a time in the earliest Eocene the climate of the Bering Route was sufficiently warm to support a primate smaller than Microcebus.
There are two important unconformities in the Calypsostranda Group (late Palaeogene) at Bellsund, Spitsbergen. The first one is the basal angular unconformity of the Skilvika Formation against folded and planated Proterozoic metasediments: the author provides evidence for its primary sedimentary character. The second one is an intraformational erosional disconformity/discontinuity expressed by rapid replacement of coal-bearing terrestrial strata (Skilvika Formation) by shallow-marine strata (Renarddodden Formation).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.