Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Hydrological and nitrate pollution processes are important parts of aquatic ecosystems. For this study we collected samples of river water, reservoir water, shallow groundwater, deep groundwater, and precipitation in the Fenhe River Basin. δD and δ¹⁸O were used to identify the hydrological process. δ¹⁵N-NO₃⁻ and δ¹⁸O-NO₃⁻ were used to identify the sources and pollution process of NO₃⁻. The results show that precipitation is the main source of water in the study area, and there is an obvious isotopic fractionation caused by evaporation. The reservoir water, river water, soil water, and shallow groundwater had a mutual recharge and discharge association. Deep groundwater is recharged by archaic groundwater and less affected by evaporation and human activity. NO₃⁻ is the main N species in the study area, nitrification is the main source of NO₃⁻, and denitrification is also found in some river branches. 46.2% of NO₃⁻-N concentrations exceeded the drinking water standard of China. NO₃⁻ Sources are mainly controlled by land use type. Nitrogen in precipitation and soil organic N are the major sources of NO₃⁻ in the upstream. The midstream area is mainly polluted by manure and sewage, while the downstream area is polluted by a mixture of soil organic N and fertilizers.
High-throughput tag-sequencing (Tag-seq) from Illumina analysis, which is based on the Solexa Genome Analyzer platform, was applied to analyze the gene expression profiling of propamocarb (PM) treatment and control in cucumber fruit. Approximately 3.6 million complete clean sequence tags at PM treatment or control library were obtained with approximately 0.1 million distinct clean tag sequences. Approximately 41.79–43.15 % of the distinct clean tags were mapped unambiguously to the unigene database, and 32.54–33.46 % of the distinct clean tags were mapped to the cucumber genome database. The profiling analysis of the differentially expressed genes revealed the up-regulation of 546 genes and the downregulation of 185 genes with PM response. Furthermore, the differentially expressed genes mainly linked to pesticide detoxication, response to stress/stimulus, transporter/ signaling, and some important transcription factors. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and reverse transcription polymerase chain reaction (RT-PCR) using 16 genes independently verified the tag-mapped results. The present study reveals the comprehensive mechanisms of PM response in cucumber fruit.
The issue of controlling a swarm of autonomous unmanned surface vehicles (USVs) in a practical maritime environment is studied in this paper. A hierarchical control framework associated with control algorithms for the USV swarm is proposed. In order to implement the distributed control of the autonomous swarm, the control framework is divided into three task layers. The first layer is the tele-operated task layer, which delivers the human operator’s command to the remote USV swarm. The second layer deals with autonomous tasks (i.e. swarm dispersion, or avoidance of obstacles and/or inner-USV collisions), which are defined by specific mathematical functions. The third layer is the control allocation layer, in which the control inputs are designed by applying the sliding mode control method. The motion controller is proved asymptotically stable by using the Lyapunov method. Numerical simulation of USV swarm motion is used to verify the effectiveness of the control framework
Dwarfism was one of the most important agronomic traits in cucumber breeding. The current study was conducted to identify dwarf-related proteins using twodimensional electrophoresis. Twenty-two differentially expressed protein spots were detected between dwarf and vine genotypes while 20 of them were successfully identified by MALDI-TOF/TOF MS. Out of 20 identified proteins in dwarf genotype, 14 were up-regulated and six were down-regulated. The classification of differential proteins showed that the identified proteins were functionally involved in photosynthesis, energy metabolism, cytoskeletal functions, transduction and signal regulation, detoxification and redox regulation. Five differentially regulated proteins were analyzed using the technique quantitative real-time PCR (qRT-PCR). The results showed that four proteins, including histone deacetylase, the EIN2- like protein, chlorophyll A/B binding protein, and ubiquitin-conjugating enzyme Spm2 (E2) were up-regulated and one F-box family protein was down-regulated in the dwarf genotype. Further western blot analysis revealed that only E2 protein was detected in the dwarf genotype, indicating its important role in the cucumber dwarf trait.
CD14 plays a crucial role in the inflammatory response to lipopolysaccharide (LPS), which interacts with TLR4 and MD-2 to enable cell activation, resulting in inflammation. Upstream inhibition of the inflammation pathway mediated by bacterial LPS, toll-like receptor 4 (TLR4) and cluster of differentiation antigen 14 (CD14) was proven to be an effective therapeutic approach for attenuating harmful immune activation. To explore the effect of CD14 downregulation on the expression of TLR4 signaling pathway-related genes after LPS stimulation in buffalo (Bubalus bubalis) monocyte/macrophages, effective CD14 shRNA sequences were screened using qRT-PCR and FACS analysis with buffalo CD14 shRNA lentiviral recombinant plasmids (pSicoRGFP-shRNA) and buffalo CD14 fusion expression plasmids (pDsRed-N1-buffalo CD14) co-transfected into HEK293T cells via liposomes. Of the tested shRNAs, shRNA-1041 revealed the highest knockdown efficiency (p < 0.01). When buffalo peripheral blood monocyte/macrophages were infected with shRNA-1041 lentivirus and stimulated with LPS, the expression of endogenous CD14 was significantly decreased by CD14 shRNA (p < 0.01), and the mRNA expression levels of TLR4, IL-6 and TNF-α were also significantly downregulated compared to the control groups (p < 0.01). These results demonstrated that the knockdown of endogenous CD14 had clear regulatory effects on the signal transduction of TLR4 after stimulation with LPS. These results may provide a better understanding of the molecular mechanisms of CD14 regulation in the development of several buffalo diseases.
Rice is one of the most important crops around the world. The cold temperature as a major abiotic stress occurs frequently affecting rice growth and final plant yield. Chitooligosaccharide (COS) has been reported as an elicitor of plant immunity that can improve plant seedling tolerance to cold stress. However, the mechanisms on the enhanced cold tolerance is unclear. Here, we report that the rice seedlings treated by COS demonstrated good cold tolerance with promoted root vigor and plant growth. COS could increase contents of proline and glutamate in the seedlings. Moreover, expression analysis revealed COS significantly induced the transcripts of the key genes associated with the glutamate and proline biosynthesis pathway during cold stress. These results indicate that COS enhanced seedling growth and cold tolerance in rice may be caused by the osmotic regulation through the accumulations of glutamate and proline to provide significant osmo-protection.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.