Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 28

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A straightforward mathematical expression for describing the vertical distributions of algal accessory pigments in oceans is presented. To this end ca 1500 empirical datasets of accessory pigment depth profiles gathered during some 200 research cruises in different oceanic regions were analysed. These data were retrieved from the bio-optical databases of SeaBASS and U.S. JGOFS published on the Internet. The statistical relationships were analysed between the concentrations of accessory pigments and the trophic indices of waters, as measured by the surface concentrations of chlorophyll a and the optical depths in different oceanic regions. A mathematical expression was established and formulas based on it were found, approximating the relations between the vertical distributions of accessory pigments and the chlorophyll a concentration. These formulas can be used to model the species composition of algae in different parts of the ocean and in remote sensing algorithms.
The aim of this work was to find statistical relationships between the concentrations of accessory pigments in natural populations of marine phytoplankton and the absolute levels and spectral distributions of underwater irradiance. To this end, empirical data sets from some 600 stations in different parts of the seas and oceans were analysed. These data were obtained from the authors’ own research and from the Internet’s bio-optical data base. They included the vertical distributions of the concentrations of various pigments (identified chromatographically) and the vertical and spectral distributions of the underwater irradiance measured in situ or determined indirectly from bio-optical models. The analysis covered a total of some 4000 points illustrating the dependence of pigment concentration on underwater irradiance characteristics, corresponding to different depths in the sea. The analysis showed that the factor governing the occurrence of photoprotecting carotenoids (PPC) is short-wave radiation λ < 480 nm. A mathematical relationship was established between the relative PPC concentration (relative with respect to the chlorophyll a concentration) and the magnitude of the absorbed radiative energy per unit mass of chlorophyll a from the spectral interval λ < 480 nm, averaged in the water layers Δz = 60 m (or less near the surface) to account for vertical mixing. This absorbed short-wave radiation (λ < 480 nm) was given the name of Potentially Destructive Radiation (PDR∗(z)). Analysis of the relationships between the concentrations of particular photosynthetic pigments (PSP), i.e. chlorophyll b, chlorophyll c, photosynthetic carotenoids (PSC), and the underwater irradiance characteristics indicated that these concentrations were only slightly dependent on the absolute level of irradiance E0(λ), but that they depended strongly on the relative spectral distribution of this irradiance f(λ) = E0(λ)/PAR0. The relevant approximate statistical relationships between the relative concentrations of particular PSP and the function of spectral fitting Fj , averaged in the layer Δz, were derived. Certain statistical relationships between the pigment composition of the phtyoplankton and the irradiance field characteristics are due to the photo- and chromatic acclimation of natural populations of marine phytoplankton. These relationships can be applied in models of the coefficients of light absorption by phytoplankton.
The range of variability of the fluorescence properties of marine phytoplankton in different trophic types of seas and at different depths in the sea is analysed theoretically. An attempt is also made to interpret artificially induced in situ fluorescence measured with submersible fluorometers. To do this, earlier optical models of light absorption by phytoplankton (see Woźniak et al. 2000, this volume) and actual empirical data were applied. A straightforward theoretical model of artificially photoinduced phytoplankton fluorescence accounting for the complex influence of different photophysiological characteristics of phytoplankton and the optical characteristics of the instrument has been worked out. A physical method of determining chlorophyll a concentrations in seawater from fluorescence measured in situ with contact fluorometers can be based on this model.
The aim of this work was to assess the effect of non-photosynthetic (photoprotecting) pigments on the measured quantum yield of photosynthesis in the sea. The energy absorbed by these pigments is not utilised during photosynthesis. As a result, the measured yield of this process, i.e. the photosynthetic yield referred to the total energy absorbed by all phytoplankton pigments, is less than the actual quantum yield of photosynthesis, i.e. the yield referred to the energy absorbed by photosynthetic pigments only. The model of the absorption properties of marine phytoplankton derived by the authors (see Woźniak et al. 2000, this volume) was employed to determine the relevant contributions of photosynthetic and non-photosynthetic pigments to the total energy absorbed by phytoplankton in different trophic types of seas and at different depths in the water column. On this basis the non-photosynthetic pigment absorption factor fa, which describes the relation between the true and measured quantum yields of photosynthesis, could be characterised. The analysis shows that fa varies in value from 0.33 to 1, and that it depends on the trophic type of sea and the depth in the water column. The values of this factor are usually highest in eutrophic waters and decrease as waters become progressively more oligotrophic. It is also characteristic of fa that it increases with increasing depth in the sea.
Statistical relationships between the quantum yield of photosynthesis and selected environmental factors in the ocean have been studied. The underwater irradiance, nutrient content, water temperature and water trophicity (i.e. the surface concentration of chlorophyll Ca(0)) have been considered, utilizing a large empirical data base. On the basis of these relationships, a mathematical model of the quantum yield was worked out in which the quantum yield Φ is expressed as a product of the theoretical maximum quantum yield ΦMAX = 0.125 atomC quanta−1 and six dimensionless factors. Each of these factors fi appears to be, to a sufficiently good approximation, dependent on one or two environmental factors and optical depth at most. The model makes it possible to determine the quantum yield from known values of these environmental factors. Empirical verification of the model yielded a positive result – the statistical error of the approximate values of the quantum yield Φ is 42%.
Statistical relationships between the quantum yield of photosynthesis Φ and selected environmental factors in the Baltic have been established on the basis of a large quantity of empirical data. The model formula is the product of the theoretical maximum quantum yield ΦMAX =0.125 atomC quantum−1 and five dimensionless factors fi taking values from 0 do 1: Φ = ΦMAXfa fΔ fc(Ca(0)) fc(PARinh) fE, t. To a sufficiently good approximation, each of these factors fi appears to be dependent on one or at most two environmental factors, such as temperature, underwater irradiance, surface concentration of chlorophyll a, absorption properties of phytoplankton and optical depth. These dependences have been determined for Baltic Case 2 waters. The quantum yield Φ, calculated from known values of these environmental factors, is then applicable in the model algorithm for the remote sensing of Baltic primary production. The statistical error of the approximate quantum yields Φ is 62%.
The article describes applications and accuracy analyses of a statistical model of light absorption by phytoplankton that accounts for the influence of photo- and chromatic acclimation on its absorption properties. Part 1 of this work (seeWoźniak et al. 2000, this volume) describes the mathematical apparatus of the model. Earlier models by Woźniak & Ostrowska (1990) and by Bricaud et al. (1995, 1998) are analysed for comparison. Empirical verification of these three models shows that the new model provides a much better approximation of phytoplankton absorption properties than do the earlier models. The statistical errors in estimating the mean absorption coefficient apl, for example, are σ+ = 36% for the new model, whereas for the earlier models the figures are σ+ = 43% (Bricaud et al. 1995, 1998) and σ+ = 59% (Woźniak & Ostrowska 1990). Example applications are given of the new model illustrating the variability in phytoplankton absorption properties with depth and trophicity of the sea.
This article is the first in a series of three describing the modelling of the vertical different photosynthetic and photoprotecting phytoplankton pigments concentration distributions in the Baltic and their interrelations described by the so-called non-photosynthetic pigment factor. The model formulas yielded by this research are an integral part of the algorithms used in the remote sensing of the Baltic ecosystem. Algorithms of this kind have already been developed by our team from data relating mainly to oceanic Case 1 waters (WC1) and have produced good results for these waters. But their application to Baltic waters, i.e., Case 2 waters, was not so successful. On the basis of empirical data for the Baltic Sea, we therefore derived new mathematical expressions for the spatial distribution of Baltic phytoplankton pigments. They are discussed in this series of articles. This first article presents a statistical model for determining the total concentration of chlorophyll a (i.e., the sum of chlorophylls a+pheo derived spectrophotometrically) at different depths in the Baltic Sea Ca(z) on the basis of its surface concentration Ca(0), which can be determined by remote sensing. This model accounts for the principal features of the vertical distributions of chlorophyll concentrations characteristic of the Baltic Sea. The model’s precision was verified empirically: it was found suitable for application in the efficient monitoring of the Baltic Sea. The modified mathematical descriptions of the concentrations of accessory pigments (photosynthetic and photoprotecting) in Baltic phytoplankton and selected relationships between them are given in the other two articles in this series (Majchrowski et al. 2007, Woźniak et al. 2007b, both in this volume).
This is the second in a series of articles, the aim of which is to derive mathematical expressions describing the vertical distributions of the concentrations of different groups of phytoplankton pigments; these expressions are necessary in the algorithms for the remote sensing of the marine ecosystem. It presents formulas for the vertical profiles of the following groups of accessory phytoplankton pigments: chlorophylls b, chlorophylls c, phycobilins, photosynthetic carotenoids and photoprotecting carotenoids, all for the uppermost layer of water in the Baltic Sea with an optical depth of τ ≈ 5. The mathematical expressions for the first four of these five groups of pigments, classified as photosynthetic pigments, enable their concentrations to be estimated at different optical depths in the sea from known surface concentrations of chlorophyll a. The precision of these estimates is characterised by the following relative statistical errors according to logarithmic statistics σ−: approximately 44% for chlorophyll b, approx. 39% for chlorophyll c, approx. 43% for phycobilins and approx. 45% for photosynthetic carotenoids. On the other hand, the mathematical expressions describing the vertical distributions of photoprotecting carotenoid concentrations enable these to be estimated at different depths in the sea also from known surface concentrations of chlorophyll a, but additionally from known values of the irradiance in the PAR spectral range at the sea surface, with a statistical error σ− of approximately 42%
Existing statistical models of in vivo light absorption by phytoplankton (Woźniak & Ostrowska 1990, Bricaud et al. 1995, 1998) describe the dependence of the phytoplankton specific spectral absorption coefficient a∗ pl(λ) on the chlorophyll a concentration Ca in seawater. However, the models do not take into account the variability in this relationship due to phytoplankton acclimation. The observed variability in the light absorption coefficient and its components due to various pigments with depth and geographical position at sea, requires further accurate modelling in order to improve satellite remote sensing algorithms and interpretation of ocean colour maps. The aim of this paper is to formulate an improved model of the phytoplankton spectral absorption capacity which takes account of the pigment composition and absorption changes resulting from photo- and chromatic acclimation processes, and the pigment package effect. It is a synthesis of earlier models and the following statistical generalisations: (1) statistical relationships between various pigment group concentrations and light field properties in the sea (described by Majchrowski & Ostrowska 2000, this volume); (2) a model of light absorption by phytoplankton capable of determining the mathematical relationships between the spectral absorption coefficients of the various photosynthetic and photoprotecting pigment groups, and their concentrations in seawater (Woźniak et al. 1999); (3) bio-optical models of light propagation in oceanic Case 1 Waters and Baltic Case 2 Waters (Woźniak et al. 1992a, b, 1995a,b). The generalised model described in this paper permits the total phytoplankton light absorption coefficient in vivo as well as its components related to the various photosynthetic and photoprotecting pigments to be determined using only the surface irradiance PAR(0+) surface chlorophyll concentration Ca(0) and depth z in the sea as input data.
This paper, part 3 of the description of vertical pigment distributions in the Baltic Sea, discusses the mathematical expression enabling the vertical distributions of the non-photosynthetic pigment absorption factor fa to be estimated. The factor fa is directly related to concentrations of the several groups of phytoplankton pigments and describes quantitatively the ratio of the light energy absorbed at given depths by photosynthetic pigments to the light energy absorbed by all the phytoplankton pigments together (photosynthetic and photoprotecting). Knowledge of this factor is highly desirable in the construction of state-of-the-art ‘light-photosynthesis’ models for remote-sensing purposes. The expression enables fa to be estimated with considerable precision on the basis of two surface parameters (available from satellite observations): the total chlorophyll a concentration at the surface Ca(0) and the spectral downward irradiance Ed(λ, 0) just below the sea surface. The expression is applicable to Baltic waters from the surface down to an optical depth of τ ≈5. The verification of the model description of fa was based on 400 quasi-empirical values of this factor which were calculated on the basis of empirical values of the following parameters measured at the same depths: Ed(λ, z) (or also PAR(z)), apl(λ, z), and the concentrations of all the groups of phytoplankton pigments Ca(z) and Cj(z) (where j denotes in turn chl b, chl c, PSC, phyc, PPC). The verification shows that the errors in the values of the non-photosynthetic pigment absorption factor fa estimated using the model developed in this work are small: in practice they do not exceed 4%. Besides the mathematical description of the vertical distribution of fa, this paper also discusses the range of variation of its values measured in the Baltic and its dependence on the trophic index of a basin and depth in the sea. In addition, the similarities and differences in the behaviour of fa in Baltic and oceanic basins are compared.
Analysed by differential spectroscopy, 1208 empirical spectra of light absorption apl(λ) by Baltic phytoplankton were spectrally decomposed into 26 elementary Gaussian component bands. At the same time the composition and concentrations of each of the 5 main groups of pigments (chlorophylls a, chlorophylls b, chlorophylls c, photosynthetic carotenoids and photoprotecting carotenoids) were analysed in 782 samples by HPLC. Inspection of the correlations between the intensities of the 26 elementary absorption bands and the concentrations of the pigment groups resulted in given elementary bands being attributed to particular pigment groups and the spectra of the mass-specific absorption coefficients established for these pigment groups. Moreover, balancing the absorption effects due to these 5 pigment groups against the overall absorption spectra of phytoplankton suggested the presence of a sixth group of pigments, as yet unidentified (UP), undetected by HPLC. Apr eliminary mathematical description of the spectral absorption properties of these UP was established. Like some forms of phycobilins, these pigments are strong absorbers in the 450–650 nm spectral region. The packaging effect of pigments in Baltic phytoplankton was analysed statistically, then correlated with the concentration of chlorophyll a in Baltic water. As a result, a Baltic version of the algorithm of light absorption by phytoplankton could be developed. This algorithm can be applied to estimate overall phytoplankton absorption spectra and their components due to the various groups of pigments from a knowledge of their concentrations in Baltic water.
Using laboratory cultures of algae and natural phytoplankton populations from Nhatrang Bay (South China Sea), the relationship between the chlorophyll fluorescence F0, the chlorophyll a concentration Ca and light absorption capacities of algae cells was studied. It is shown that the ratio F0/Ca depends mainly on the species composition of the algae population; hence, the concentration Ca can be measured with the fluorescence method with acceptable accuracy only when the species composition of algae populations varies over a rather narrow range. The fluorescence F0 can, however, be a good index of the total absorption capacities of different phytoplankton species, because the intensity of F0 depends on the sum total of light absorbed by all photosynthetic pigments in a plant cell. Thus, the fluorescence F0 measures not only the concentration of chlorophyll a, but that of all photosynthetic pigment concentrations.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.