Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The genus Brachypodium has become the target of extensive cytomolecular studies since one of its representatives, B. distachyon, has been accepted as a model plant for temperate cereals and forage grasses. Recent preliminary studies suggested that intraspecific rDNA polymorphism can occur in at least two members of the genus, B. sylvaticum and B. pinnatum, so the aim of this study was to further analyse this phenomenon. FISH with 25S rDNA and 5S rDNA probes was performed on somatic metaphase chromosomes, supplemented by the silver staining technique which distinguishes transcriptionally active from inactive 18S-5.8S-25S rDNA loci. The number, size and chromosomal distribution of 5S rDNA loci were very constant: two loci were invariably observed in all studied diploid accessions of both species, while four 5S rDNA loci were present in the tetraploid B. pinnatum. In contrast to 5S rDNA loci, those of the 35S rDNA were more variable. Two or three loci were observed in the diploid B. pinnatum and four in tetraploid accessions. In chromosome complements of B. sylvaticum accessions from two to six 35S rDNA sites were detected. Regardless of total rDNA locus number, only two were transcriptionally active in diploid accessions of both species, while two or four were active in the tetraploid B. pinnatum. Additionally, the fluorescent CMA/DAPI banding method was used to identify the relation between rDNA sites and CMA+ bands. It was revealed that the number and chromosomal distribution of CMA+ bands are in congruence only with 35S rDNA loci which gave strong FISH signals.
Fluorescence and genomic in situ hybridization (FISH and GISH) methods were used for discrimination of Brassica genomes. The three diploid and three allotetraploid species of Brassica, known as the "U-triangle," represent an attractive model for molecular and cytologieal analysis of genome changes during phylogeny in the genus Brassica. The use of genomic DNA probes enabled unambiguous discrimination of the ancestral genomes in B. juncea and B. carinata, and was only partially successful in B. napus. GISH signals in all genomes were localized predominantly in pericentromeric regions of chromosomes. Simultaneous application of genomic and ribosomal DNA probes in multicolor GISH and FISH allowed identification of a significant number of chromosomes in the B. juncea complement. The study also revealed that species of Brassica possess Arabidopsis-type telomeric repeats which in all genomes occupied exclusively terminal, that is, telomeric, locations of chromosomes.
Intraspecific changes in genome size and chromosome number lead to divergence and species evolution. Heavy metals disturb the cell cycle and cause mutations. Areas contaminated by heavy metals (metalliferous sites) are places where microevolutionary processes accelerate; very often only a few generations are enough for a new genotype to arise. This study, which continues our long-term research on Viola tricolor (Violaceae), a species occurring on both metalliferous (Zn, Pb, Cd, Cu) and non-metalliferous soils in Western and Central Europe, is aimed at determining the influence of environments polluted with heavy metals on genome size and karyological variability. The genome size of V. tricolor ranged from 3.801 to 4.203 pg, but the differences between metallicolous and non-metallicolous populations were not statistically significant. Altered chromosome numbers were significantly more frequent in material from the polluted sites than from the non-polluted sites (43% versus 28%). Besides the standard chromosome number (2n = 26), aneuploid cells with lower (2n = 18–25) or higher (2n = 27, 28) chromosome numbers were found in plants from both types of site, but polyploid (2n = 42) cells were observed only in plants from the metalliferous locality. The lack of correlation between chromosome variability in root meristematic cells and genome size estimated from peduncle cells can be attributed to elimination of somatic mutations in generative meristem, producing chromosome-stable non-meristematic tissues in the peduncle.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.