Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Two new species of the genus Nazeris Fauvel collected from Meihuashan Nature Reserve, Fujian Province, are described under the names of N. fujianensis sp. nov. and N. xuiwangi sp. nov. The male sexual characters are described and illustrated.
Leaf carbon isotope composition (δ¹³C) of both vascular and non-vascular plants were investigated in order to assess their variability along an altitude gradient (414, 620, 850, 1086, 1286 and 1462 m) from a subtropical monsoon forest located at Mt. Tianmu Reserve, eastern China. Leaf δ¹³C values of all plant species ranged from -34.4 to -26.6‰, with an average of -29.8‰. There is no significant difference in leaf δ¹³C between vascular plants and mosses, however, trees had significantly higher δ¹³C values than herbs. For pooled data, leaf δ¹³C was positively correlated with altitude. Leaf δ¹³C was significantly and negatively correlated with annual mean temperature and atmospheric pressure, while it was significantly and positively correlated with soil water content. Furthermore, there was no relationship between leaf δ¹³C and soil nitrogen content or soil phosphorus content. The altitudinal trend in leaf δ¹³C is the consequence of the interaction between temperature, atmospheric pressure and soil water content.
Leaf carbon isotope composition (δ¹³C) of both vascular and non-vascular plants were investigated in order to assess their variability along an altitude gradient (414, 620, 850, 1086,1286 and 1462 m) from a subtropical monsoon forest located at Mt. Tianmu Reserve, eastern China. Leaf δ¹³C values of all plant species ranged from -34.4 to -26.6‰, with an average of -29.8‰. There is no significant difference in leaf δ¹³C between vascular plants and mosses, however, trees had significantly higher δ¹³C values than herbs. For pooled data, leaf δ¹³C was positively correlated with altitude. Leaf δ¹³C was significantly and negatively correlated with annual mean temperature and atmospheric pressure, while it was significantly and positively correlated with soil water content. Furthermore, there was no relationship between leaf δ¹³C and soil nitrogen content or soil phosphorus content. The altitudinal trend in leaf δ¹³C is the consequence of the interaction between temperature, atmospheric pressure and soil water content.
Artemisia annua L. is the main source of artemisinin, currently the most effective treatment for malaria. However, an affordable and abundant supply of artemisinin remains elusive. Trichoderma is a biocontrol agent that stimulates plant growth and defense responses, and improves soil quality. To date, relatively few studies have focused on improving leaf biomass and artemisinin production in A. annua using Trichoderma. To investigate the role of T. asperellum ACCC30536 in improving the artemisinin yield of A. annua, field-grown A. annua was inoculated with T. asperellum conidia and grown for 60 days. The results showed that leaf artemisinin concentration and dry weight were increased significantly after inoculation. The optimal inoculation dose was 200 mL of conidia suspension at 1 × 10⁷ colony-forming units (cfu)/mL, the highest artemisinin concentration was 8.83 mg/g, and the highest artemisinin production was 70.6 g on day 50. The results of qRT-PCR revealed that expression of genes encoding key enzymes for artemisinin biosynthesis, namely HMGR1, FPS, ADS, CYP71AV1, CPR, DBR, DXS1, and DXR1, was generally upregulated during days 20–50 following induction by Trichoderma. In addition, the moisture, pH stability, organic matter content, and availability of nitrogen, phosphorus, and kalium in inoculated soil were significantly improved. Thus, application of T. asperellum ACCC30536 may offer a novel approach for improving artemisinin production by upregulating the expression of key enzymes for artemisinin biosynthesis, increasing leaf yield, and improving soil fertility.
Al-activated organic acid transporter genes (ALMT and MATE) and plasma membrane H?-ATPase gene (PHA) are known to contribute to the regulation of organic acid secretion in several crops. However, it remains unclear how these genes interact to modulate organic acid exudation in the same plant species. In this study, Al-induced expression of genes (GmALMT1, GmMATE1 and GmPHA1), secretion of organic acid and root elongation were characterized in soybean roots. Results indicated that treatment with 50 lM Al activated the expression of GmALMT1, GmMATE1 and GmPHA1, and the exudation of citrate and malate significantly in apical 5 mm region of soybean seedlings, but inhibited root elongation by 57.8 %. The highest malate exudation rate and the maximal expression of GmALMT1 and GmPHA1 were observed after 2 h of 50 lM Al treatment, while the corresponding values for citrate exudation rate and GmMATE1 expression occurred at 8 h. The exudation of malate and citrate contributed to but could not recover Al-triggered root elongation. A root-split experiment indicated that Al-activated gene expression, organic acid secretion and root growth inhibition required the direct contact of Al3?. The removal of shoots in soybean seedlings decreased Al-activated gene expression by 26.1–40.5 %, and secretion of organic acid by 14.7–40.2 %. Furthermore, shoot excision aggravated Al-inhibited root elongation, indicating the existence of other Al tolerance mechanism except the exudation of organic acid. These results suggested that Al-activated expression of GmPHA1-, GmMATE1- and GmALMT1-mediated exudation of malate and citrate, and shoots played an important role in Al toxicity resistance in soybean roots.
MicroRNAs (miRNAs) are a set of small, noncoding RNAs that negatively and post-transcriptionally mediate their respective target mRNAs by directing the target mRNA cleavage or translational repression. Plant miRNAs have been involved in developmental processes and adaption to biotic and abiotic stresses in their environment. The banded leaf and sheath blight (BLSB) caused by Rhizoctonia solani is extremely harmful to maize. To investigate the functions of miRNAs under R. solani inoculation, miRNA expression in R. solani infected maize (Zea mays L.) was profiled using deep sequencing. In total, 41 significantly differentially expressed known miRNAs and 39 novel R. solani-responsive miRNAs were identified, of which 9 identified miRNAs were further validated by qRT-PCR, and 2 important miRNAs were analyzed by in situ hybridization. Target genes were also predicted for these R. solani-responsive miRNAs; most of these putative target genes encoded transcription factors and proteins associated with metabolic processes or stress responses. In addition, the mRNA expression levels of several target genes that negatively correlated with the levels of corresponding miRNAs under R. solani inoculation were validated by qRT-PCR. These findings hypothesized that these miRNAs play an important role in R. solani resistance in maize, highlighting novel molecular mechanisms of R. solani resistance in plants.
Acquisition of inorganic phosphate (Pi) by plant roots is performed by phosphate transporters (PTs) located at the cytoplasmic membranes of epidermal cells and root hairs. A Triticum aestivum PT gene denoted as TaPT2 was functionally characterized in this study. TaPT2 is highly similar to TtPT2 and HvPT2, two PHT1 family genes in T. aestivum/Thinopyrum intermedium and barley, respectively. TaPT2 is 1,802 bp long at the cDNA level; it encodes a 525-amino acid polypeptide with a molecular weight of 57.5 kDa and an isoelectric point of 8.65. TaPT2 contains 12 conserved membrane-spanning domains and is transported to the cytosolic membrane after endoplasmic reticulum sorting. Functional complement analysis revealed that TaPT2 endowed Pi transporter activities in a yeast mutant that is defective in Pi uptake, with highaffinity Pi acquisition. TaPT2 transcripts were specifically detected in the roots. The transcripts were upregulated under Pi deprivation and downregulated under Pi sufficiency. These results suggest that TaPT2 expression is associated with external Pi concentration. Transgene analysis revealed that TaPT2 overexpression or knockdown did not regulate plant dry mass production, Pi acquisition, and photosynthetic capacity under Pi sufficiency. Under Pi deprivation, TaPT2 overexpression increased plant dry mass accumulation, total P content per plant, and photosynthetic efficiencies, whereas TaPT2 downregulation reduced plant dry mass, accumulative P amount, and photosynthetic parameters. These results collectively suggest that TaPT2 is a high-affinity PHT1 member that has important functions in mediating plant Pi uptake under Pi deprivation. TaPT2 can serve as a useful gene resource for the improvement of phosphorus use efficiency in cereals under Pi deprivation.
Rice is one of the most important crops around the world. The cold temperature as a major abiotic stress occurs frequently affecting rice growth and final plant yield. Chitooligosaccharide (COS) has been reported as an elicitor of plant immunity that can improve plant seedling tolerance to cold stress. However, the mechanisms on the enhanced cold tolerance is unclear. Here, we report that the rice seedlings treated by COS demonstrated good cold tolerance with promoted root vigor and plant growth. COS could increase contents of proline and glutamate in the seedlings. Moreover, expression analysis revealed COS significantly induced the transcripts of the key genes associated with the glutamate and proline biosynthesis pathway during cold stress. These results indicate that COS enhanced seedling growth and cold tolerance in rice may be caused by the osmotic regulation through the accumulations of glutamate and proline to provide significant osmo-protection.
Drought stress is the main limiting factor of crop productivity. Wild soybean (Glycine soja) is a fine germplasm resource, which has a high tolerance to adverse environmental conditions. This study aimed to reveal the mechanism responsible for drought tolerance in drought-tolerant wild soybean. Here, the growth parameters and metabolomics of the two wild soybean varieties’ seedlings were analyzed under polyethylene glycol-simulated drought stress using gas chromatography–mass spectrometry. In total, 61 differentially accumulated metabolites were identified in leaves under polyethylene glycol-6000-simulated drought conditions. Compared with common wild soybean, the drought-tolerant wild soybean grew better. A metabolite profiling analysis suggested that the tricarboxylic acid cycle was enhanced in drought-tolerant wild soybean but inhibited in common wild soybean compared with the control group under simulated drought stress. Thus, the accumulation of osmotic compounds and the enhancement of energy and secondary antioxidant metabolism under drought-stress conditions are the mechanisms responsible for drought tolerance in drought-tolerant wild soybean. The results provide an important theoretical basis for utilizing wild soybean resources.
Visfatin is a peptide that is predominantly expressed in visceral adipose tissue and is hypothesized to be related to obesity and insulin resistance. In this study, a novel silent single-nucleotide polymorphism (SNP) was found in exon 7 of the chicken visfatin gene (also known as PBEF1) by single-stranded conformation polymorphism (SSCP) and DNA sequencing. In total, 836 chickens forming an F₂ resource population of Gushi chicken crossed with Anka broiler were genotyped by Xbal forced RFLP, and the associations of this polymorphism with chicken growth, carcass characteristics, and meat quality were analyzed. Significant associations were found between the polymorphism and 4-week body weight (BW4), 6-week body weight (BW6), 4-week body slanting length (BSL4), fat bandwidth (FBW), breast muscle water loss rate (BWLR) and breast muscle fiber density (BFD) (P < 0.05), as well as 4-week breastbone length (BBL4) (P < 0.01). These observations suggested that the polymorphism in exon7 of the visfatin gene had significant effects on the early growth traits of chicken.
To develop an easy and robust method for creating genetically stable and easily detectable Arabidopsis mutants, we adopted the polycistronic tRNA–gRNA CRISPR/Cas9 (PTG/Cas9) system, a multiplex gene-editing tool in rice, with PTOX as the reporter gene. The PTG/Cas9 system has a great potential in generating large deletions detectable by PCR, which greatly simplifies the laborious work of mutant screening. We constructed a PTOX–PTG/Cas9 system with five gRNAs and introduced it into Arabidopsis. At T1 generation, 24.4% of transgenic plants were chimeric with PCR-detectable deletions in PTOX locus, but no homozygous mutant was found, indicating that gene editing occurred predominantly in somatic cells. After a self-cross propagation, 60% of T1 chimeric plants were able to produce homozygous, heterozygous, or bi-allelic ptox offsprings. Inheritable homozygous ptox mutants without Cas9 gene can be obtained earliest at T2 generation. We further targeted five other genes using the same procedure and achieved homozygous Cas9-free mutants with large deletions for all genes within three generations. We established a standard and reliable protocol to generate stable inherited deletion mutants in 2–3 generations along with simple PCR screening methods. We conclude that the rice PTG/Cas9 system is an efficient, easy, and rapid tool to edit genes in Arabidopsis. We propose that it could be applied to other genes in Arabidopsis, and it might have the potential to edit genes in other plant species as well.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.