Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Even though massive winds are significant disturbing factors for forest ecosystems, studies assessing topsoil properties in relation to wind-induced changes in forest floor and, specifically, works dealing with soil water repellency are lacking. On the other hand, the majority of works aimed at the wettability of soil have been carried out on soils from arid or semiarid climatic regions. Besides that, much less attention has been dedicated to soil water repellency in boreal-temperate regions and mountainous areas in particular. Here we report on water repellency of topsoil in mountainous region of the High Tatras of northern Slovakia (central Europe), where katabatic windstorm have blown down app. 12,500 hectares of forest canopy. Different management practices applied on windblown areas together with fire impact have resulted in four types of sites in the area: harvested, reference, left on self-recovery and struck by wild-fire. In order to cover the diversity of topsoil conditions, samples were taken at four representative sites. Results of WDPT and MED measurements show that a great portion of samples exhibited considerable degree of water repellency. It was found that there are significant differences in actual water repellency and field water contents between particular groups of samples taken at individual sites. Results of multiple regression analysis showed that water repellence of topsoil material is significantly controlled by water and organic carbon contents. Besides, for fire-unaffected soils it was found that the degree of water repellence is closely related to detected values of soil reaction as well. Explained portions of WDPT and MED variances ranged from 45 up to 72%.
The results of research conducted in the surroundings of a former polymetallic mine near the town of Zlaté Hory, North Moravia, Czech Republic, are presented. A by-product of the ore flotation technique was 6.8 million tons of metalliferous tailings. The adjacent forest area is contaminated by wind-blown pyritic dust particles. The experimental profile was located in a spruce monoculture down wind of the tailings. Samples of soil were taken at 50 m intervals. Ten soil pits were dug and soil samples were taken from the artificial top layer of deposited tailing dust, as well as from the Ah and Bw horizons. Soil samples were analyzed using AAS in order to obtain total heavy metal content of Cu, Zn, Pb, Cd and soluble forms of Al and Fe. The content of accessible nutrients (Mg, Ca, and K) was measured, as well as the content of organic carbon and the ratio of phosphorus retention. Both active and exchangeable soil pH was measured. Our results showed that the main problem is not heavy metal contamination per se, but rather severe acidification. The oxidation of pyrite has resulted in a decrease in pH (pH/H2O ranging from 3.1 to 4.1). The final values for Al and Fe solubility fall within either the aluminium or iron buffer ranges. Such severe acidification has led to increased toxic Al mobilization, the serious leaching of mineral nutrients (Mg: <0.05-34 mg·kg⁻¹, Ca: 0.6-244 mg·kg⁻¹, and K: <0.1-108 mg·kg⁻¹), and a high degree of irreversible retention of phosphorus (90-95%).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.