Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Three differently adapted populations of sewan grass (Lasiurus scindicus Henr.) were evaluated for structural and functional adaptations to high salinity. The habitats were Derawar Fort (DF, least saline, ECe 15.21), Bailahwala Dahar (BD, moderately saline, ECe 27.56 dS m⁻¹) and Ladam Sir (LS, highly saline, ECe 39.18 dS m⁻¹) from within the Cholistan Desert. The adaptive components of salt tolerance in sewan grass were assessed by determining various morpho–anatomical and physiological attributes. The degree of salt tolerance of all three ecotypes of L. scindicus from the saline habitats was compared in a controlled hydroponic system to evaluate the adaptive components that are expected to be genetically fixed during a long evolutionary process. Salinity tolerance in the most tolerant LS population relied on increased root length and total leaf area, restricted uptake of toxic Cl⁻, increased uptake of Ca²⁺, high excretion of Na⁺, accumulation of organic osmolytes, high water use efficiency, increased root, thicker leaf and cortical region, intensive sclerification, large metaxylem vessels, and dense pubescence on abaxial leaf surface. The BD population (from moderately saline soil) relied on high Ca²⁺ uptake, Na⁺ excretion, epidermal thickness, large cortical cells, thick endodermis and large vascular tissue. The DF population (from less saline soil) showed a significant decrease in all morphological characteristics; however, it accumulated organic osmolytes for its survival under high salinities. Structural modifications in all three populations were crucial for checking undue water loss under physiological stress that is caused by high amounts of soluble salts in the soil.
Effect of altitude on leaf responses in Phleum himalaicum populations was evaluated at three different elevation levels, viz. (Low 1200 m.a.s.l.), middle (1600 m a.s.l.) and high (1900 m a.s.l.) in western part of Himalaya. We hypothesized that physico-chemical properties of soil varied along elevation and Phleum populations located at high elevation would adapt more distinct morphological and physiological traits than those originating from middle and low elevation sites. Our study revealed that soil pH, Ec Mg, Ca, and P decreased at high elevation however, significant increase was recorded in soil K, organic matter, and total nitrogen along the elevation gradient. A significant correlation between leaf characteristics and elevation sites was recorded along the gradient. The outcomes of this study showed that highland population had better adjustments under low temperature and exhibited adaptive traits. These were, decreased number of leaves and leaf area, increased leaf blade thickness, intensive sclerification, and greater stomatal and trichome density. Apart from these, high elevation population had more physiological adjustment in terms of low stomatal conductance, low transpiration rate, high water use efficiency, and synthesis of more osmolytes in leaf. We argued that certain level of sugar and protein must be attained by high population to dodge the aggressive climatic forces in order to grow successfully at the highest elevation. Furthermore, altitude between 1600 and 1900 m was more likely an optimum zone for vigorous growth of P. himalaicum at the highest level of elevation.
The development of drought tolerant wheat cultivars has been slow due to lack of understanding the diagnostic physiological parameters associated with improved productivity under water stress. We evaluated responses to PEG induced osmotic stress under hydroponics in D-genome synthetic derived and bread wheat germplasm with the main aim to unravel and identify some promising attributes having role in stress tolerances. Genotypes used in this study differed in their morpho-physiological and biochemical attributes. Tolerant genotypes exhibited the ability to ameliorate harmful effects of PEG induced osmotic stress through better osmotic adjustment achieved through substantial relative water content (RWC), lowered osmotic potential, relatively stable root length having maximum water extraction capacity, significant increase in osmoprotectant concentration and relatively enhanced antioxidant activities. The results clearly revealed the importance of synthetic derivatives over check cultivars and conventional wheats in terms of osmotic stress responses. Interestingly, synthetic-derived advanced lines with Aegilops tauschii in its parentage including AWL-02, AWL-04 and AWL-07 proved superior over the best rainfed check cultivar (Wa-01). It was concluded that syntheticderived wheats has great potential to improve a range of stress adaptive traits. It could, therefore, be recommended to be a useful strategy for allowing modern bread wheat to become adapted to a wider range of environments in future climate change scenarios.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.