Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
A new family, Mississaepiidae, from the Sepia–Spirula branch of decabrachian coleoids (Cephalopoda), is erected on the basis of the following, recently revealed, morphological, ultrastructural and chemical traits of the cuttlebone in the late Eocene Mississaepia, formerly referred to Belosaepiidae: (i) septa are semi−transparent, largely chitinous (as opposed to all other recorded cephalopods having non−transparent aragonitic septa); (ii) septa have a thin lamello−fibrillar nacreous covering (Sepia lacks nacre altogether, Spirula has fully lamello−fibrillar nacreous septa, ectochochleate cephalopods have columnar nacre in septa); (iii) a siphonal tube is present in early ontogeny (similar to siphonal tube development of the Danian Ceratisepia, and as opposed to complete lack of siphonal tube in Sepia and siphonal tube development through its entire ontogeny in Spirula); (iv) the lamello−fibrillar nacreous ultrastructure of septal necks (similar to septal necks in Spirula); (v) a sub−hemispherical protoconch (as opposed to the spherical protoconchs of the Danian Ceratisepia and Recent Spirula); (vi) conotheca has ventro−lateral extension in early ontogenetic stages (as opposed to Sepia that has no ventro−lateral extention of the conotheca and to Spirula that retains fully−developed phragmocone throughout its entire ontogeny). Chitinous composition of septa in Mississaepia is deduced from (i) their visual similarity to the chitinous semi−transparent flange of Sepia, (ii) angular and rounded outlines and straight compressive failures of the partial septa and mural parts of septa similar to mechanically−damaged dry rigid chitinous flange of Sepia or a gladius of squid, and (iii) organics consistent with −chitin preserved in the shell. The family Mississaepiidae may represent a unknown lineage of the Sepia–Spirula branch of coleoids, a conotheca lacking a nacreous layer being a common trait of the shell of this branch. However, Mississaepiidae is placed with reservation in Sepiida because of similarities between their gross shell morphology (a cuttlebone type of shell) and inorganic−organic composition. In Mississaepia, as in Sepia, the shell con− tains up to 6% of nitrogen by weight; phosphatised sheets within the dorsal shield may have been originally organic, like similar structures in Sepia; accumulations of pyrite in peripheral zones of aragonitic spherulites and in−between the spherulites of the dorsal shield may also indicate additional locations of organics in the shell of living animal.
Theoretical 3D models were digitally reconstructed from a phragmocone section of Baculites compressus in order to investigate the hydrostatic properties of the orthoconic morphotype. These virtual models all had the capacity for neutral buoyancy (or nearly so) and were highly stable with vertical syn vivo orientations. Body chamber lengths exceeding approximately 40% of the shell length cause buoyancy to become negative with the given modeled proportions. The distribution of cameral liquid within the phragmocone does not change orientation and only slightly influences hydrostatic stability. The mass of cameral liquid required to completely reduce stability, permitting a non-vertical static orientation, would cause the living cephalopod to become negatively buoyant. A concave dorsum does not significantly change the mass distribution and results in a 5° dorsal rotation of the aperture from vertical. The restoring moments acting to return neutrally buoyant objects to their equilibrium position were investigated using 3D-printed models of Nautilus pompilius and Baculites compressus with theoretically equal masses and hydrostatic stabilities to their virtual counterparts. The N. pompilius behaved as an underdamped harmonic oscillator during restoration due to its low hydrostatic stability and drag relative to the B. compressus model. In contrast, the B. compressus model more quickly returns to its equilibrium position without oscillating (overdamped system). The thrust required to overcome such a large restoring moment was explored using several extant cephalopod analogues. Significant angles of displacement were only achieved with coleoid-like thrusts, which were unrealistically high despite the probable similarities in their locomotor design. These maximum bursts of thrust may have been too energetically expensive and would preclude an unusual form of locomotion in a non-vertical orientation. These results suggest baculitids and other orthocones with similar hydrostatic stabilities probably lived a nektic to quasiplanktic mode of life with a primarily vertical orientation and mobility.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.