Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
 Aromatic plant species present in the natural Park of Tuscany Archipelago are used as flavoring agents and spices, as dietary supplements and in cosmetics and aromatherapy. The plants are usually collected from wild stands, inducing a depletion of the natural habitat. Therefore, micropropagation of these aromatic plants can play a role in the protection of the natural ecosystem, can guarantee a massive sustainable production and can provide standardized plant materials for diverse economical purposes. The aim of this study is to compare the volatile organic compounds produced by the wild plants with those from in vitro plantlets using headspace solid phase micro-extraction (HS-SPME) followed by capillary gas-chromatography coupled to mass spectrometry (GC-MS). Typical plants of this natural area selected for this work were Calamintha nepeta L., Crithmum maritimum L., Lavandula angustifolia L., Myrtus communis L., Rosmarinus officinalis L., Salvia officinalis L. and Satureja hortensis L. Different explants were used: microcuttings with vegetative apical parts, axillary buds and internodes. Sterilization percentage, multiplication rate and shoot length, as well as root formation were measured. The volatile aromatic profiles produced from in vitro plantlets were compared with those of the wild plants, in particular for C. maritimum, R. officinalis, S. officinalis and S. hortensis. This study indicated that the micropropagation technique can represent a valid alternative to produce massive and sterile plant material characterised by the same aromatic flavour as in the wild grown plants.
Leaves and internodes from Stevia rebaudiana Bertoni plants growing in different conditions were used for transformation with two strains of Agrobacterium rhizogenes: ATCC 15384 and LBA 9402. Hairy roots formation was observed and the percentage of the transformed explants depended on the type of explant, time of inoculation and inoculum concentration. Inoculation of explants from ex vitro and in vitro plants with LBA 9402 strain led to higher efficiency of transformation than inoculation with ATCC 15384 strain. Growth rate of hairy roots in liquid culture was assessed under light and dark conditions. It was found that the growth of hairy roots decreased significantly under light conditions. Transformation of hairy roots growing in different culture conditions was confirmed at the molecular level using PCR method with primers constructed against rolB and rolC genes from A. rhizogenes.
 The essential oils (EOs) and static headspaces (HSs) of in vitro plantlets and callus of Mentha x piperita were characterized by GC-MS analysis. Leaves were used as explants to induce in vitro plant material. The EO yields of the in vitro biomass were much lower (0.1% v/w) than those of the parent plants (2% v/w). Many typical mint volatiles were emitted by the in vitro production, but the callus and in vitro plantelet EOs were characterized by the lack of both pulegone and menthofuran. This was an important difference between in vitro and in vivo plant material as huge amounts of pulegone and menthofuran may jeopardise the safety of mint essential oil. Regarding the other characteristic volatiles, menthone was present in reduced amounts (2%) in the in vitro plantlets and was not detected in the callus, even if it represented the main constituent of the stem and leaf EOs obtained from the cultivated mint (26% leaves; 33% stems). The M. piperita callus was characterized by menthol (9%) and menthone (2%), while the in vitro plantlet EO showed lower amounts of both these compounds in favour of piperitenone oxide (45%). Therefore, the established callus and in vitro plantlets showed peculiar aromatic profiles characterized by the lack of pulegone and menthofuran which have to be monitored in the mint oil for their toxicity.
In vitro plantlets and callus of M. longifolia were established and their volatile constituents characterized by GC-MS analysis of their headspaces (HSs) and essential oils (EOs). Significant quali-quantitative differences were found in the aromatic fingerprints in comparison with the M. longifolia parent plants. In fact, limonene and carvone were the main constituents in the EOs of the mother plants, while the aroma of the in vitro plant material were especially enriched in oxygenated terpenes. In particular, huge amounts of piperitenone and piperitenone oxide (75 %) were found for in vitro plantlets, while trans-carvone oxide (19 %) and trans-piperitone epoxide (9 %) were found in callus EO. However, the established in vitro plant material showed lack of pulegone and menthofurane, thus preserving an important feature observed in the volatile fingerprint of the parent plants. In fact, because of their well-known toxicity significant amounts of pulegone and menthofurane may compromise the safety using of mint essential oil. Therefore the in vitro M. longifolia plantlets and callus may be regarded as a potential source of a safe flavouring agent.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.