Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This study was conducted to examine the seasonal dynamics of biomass and plant nitrogen (N) content under three grazing intensities (light grazing – LG: 1.2, moderate grazing – MG: 2.0, and heavy grazing – HG: 2.9 yaks ha⁻¹) in representative alpine meadow on the eastern Tibetan Plateau. Differentiation in grazing intensity in the study area started since 1997 and has continued to the present time. Plant samples were collected in the middle of June, August and September. The highest aboveground biomass occurred at the MG site for both August and September. Over the growing season, belowground biomass (0–30 cm) increased as grazing intensity increased. The total belowground biomass averaged over all sampling dates was 1226, 1908 and 2244 g m⁻² for LG site, MG site and HG site, which accounted for 75, 81 and 88% of total biomass, respectively. The results suggested that grazing intensity changed biomass allocation pattern between aboveground and belowground parts of plants. Higher grazing intensity resulted in higher N concentration in both live and dead aboveground biomass over the study period. Increased grazing intensity tended to increase plant N content averaged over all sampling dates, which were 17.9 g m⁻², 23.8 g m⁻² and 27.6 g m⁻² in LG site, MG site and HG site. The results indicated that higher grazing intensity had a potential to increase the ecosystem pool of plant N.
Background: The regulation of microglial function via mitochondrial homeostasis is important in the development of neuroinflammation. The underlying mechanism for this regulatory function remains unclear. In this study, we investigated the protective role of mitochonic acid 5 (MA-5) in microglial mitochondrial apoptosis following TNFα-induced inflammatory injury. Methods: TNFα was used to induce inflammatory injury in mouse microglial BV-2 cells with and without prior MA-5 treatment. Cellular apoptosis was assessed using the MTT and TUNEL assays. Mitochondrial functions were evaluated via mitochondrial membrane potential JC-1 staining, ROS flow cytometry analysis, mPTP opening assessment, and immunofluorescence of cyt-c. Mitophagy was examined using western blots and immunofluorescence. The pathways analysis was carried out using western blots and immunofluorescence with a pathway blocker. Results: Our results demonstrated that TNFα induced apoptosis in the microglial BV-2 cell line by activating the caspase-9-dependent mitochondrial apoptotic pathway. Mechanistically, inflammation reduced mitochondrial potential, induced ROS production, and contributed to the leakage of mitochondrial pro-apoptotic factors into the cytoplasm. The inflammatory response reduced cellular energy metabolism and increased oxidative stress. By contrast, treatment with MA-5 reduced mitochondrial apoptosis via upregulation of mitophagy. Increased mitophagy degraded damaged mitochondria, disrupting mitochondrial apoptosis, neutralizing ROS overproduction, and improving cellular energy production. We also identified that MA-5 regulated mitophagy via Bnip3 through the MAPK–ERK–Yap signaling pathway. Inhibiting this signaling pathway or knocking down Bnip3 expression prevented MA-5 from having beneficial effects on mitochondrial homeostasis and increased microglial apoptosis. Conclusions: After TNFα-induced inflammatory injury, MA-5 affects microglial mitochondrial homeostasis in a manner mediated via the amplification of protective, Bnip3-related mitophagy, which is mediated via the MAPK–ERK–Yap signaling pathway.
It is generally assumed that plants can respond to varying degrees of physical damage by growth compensation via resprouting, and resprouting is a key functional trait in many species. Few studies have investigated how grass and shrub species distributed in moving dunes and semifixed dunes in semiarid areas respond to the combined effects of temperature and shoot removal. Medicago sativa, Artemisia ordosica, and Artemisia sphaerocephala plants were grown in a glasshouse for 8 weeks at air temperatures of 10/20°C, 12.5/22.5°C, 15/25°C, and 17.5/27.5°C (night/day) and were subjected to treatments of removing all leaves (LR), removing all leaves followed by cutting at half the plant height (HC), and removing all aboveground tissue (WC). The species, temperature, and damage extent had significant effects on the shoot number, leaf mass ratio, leaf area ratio and ratio of belowground to aboveground dry matter, and the species had a significant effect on the net assimilation rate, specific leaf area, and total biomass. The three species grew well under the HC and LR treatments, and high temperatures (15/25°C and 17.5/27.5°C) significantly promoted the regrowth of the three species. Medicago sativa grew faster than the two Artemisia species. Medicago sativa can be used for fertilizing or vegetation restoration in unimportant conservation areas, and the two Artemisia species can be effectively used for vegetation restoration in the Mu Us Sandland. Due to the low labor costs and the local climate conditions, plants should be clipped before the beginning of the main growing season (end of May or early June) to ensure rapid growth.
Sonneratia alba (S. alba) is a mangrove species grown in brackish water of tropical and subtropical regions. Due to its unique environment, it has evolved various mechanisms for modulating salt and metal levels. In order to find the genes connected with bioaccumulation of metals, the root transcriptome annotation of Sonneratia alba was analyzed and a new metallothionein (MT) gene was cloned. Sequence analysis found that the new MT gene belongs to type 3 MT, which is mostly expressed in roots. A simple and efficient method was used to express the type 3 MT of S. alba (SaMT3) by transforming the recombinant expression vector pET15b-SaMT3 into Escherichia coli (E. coli) Rosetta-gami and induction with the optimal conditions of 500 μM Isopropyl β-D-1-thiogalactopyranoside (IPTG) at 24ºC for 12 h. OD₆₀₀ of E. coli cells expressing His fused SaMT3 protein after treated with 500 μM Cu²⁺ or 500 μM Pb²⁺ for 12 h can reach 1.01 or 0.98, while OD₆₀₀ of control cells expressing His-tag can reach only 0.81 or 0.75. Both control cells and the cells expressing SaMT3 accumulated metals. Cells expressing SaMT3, however, accumulated more Pb²⁺ and Cu²⁺ (more than two times) than control cells. In vivo, real-time PCR showed that the SaMT3 transcript was induced significantly when stimulated with 250 μM, 500 μM, or 1,000 μM Cu²⁺ or Pb²⁺ for 24 h and 48 h. Taken together, the expression of SaMT3 can increase Cu²⁺ and Pb²⁺ resistance and binding capacity of E. coli.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.