Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This study was conducted to evaluate the influence of boron (B) application through seed coating on leaf elongation, tillering, water relations, panicle sterility, kernel yield, and grain biofortification of fine grain aromatic rice. Boron was applied as seed coating at 1.0, 1.5, 2.0, 2.5, and 3.0 g B kg-1 seed in two rice cultivars Super Basmati and Shaheen Basmati. Boron seed coating significantly affected the leaf elongation, water relations, panicle fertility, kernel yield and grain biofortification in both rice cultivars. However, seed coating with 1.0–2.0 g B kg-1 seed was effective in improving the leaf emergence and elongation, and tillering. Whereas water relations (water and osmotic potential) were improved by all B seed coating treatments, but pressure potential was only improved from seed coating with 2.0–3.0 g B kg-1 seed. Kernel yield was improved by all B seed coating treatments; however seed coating with 2 g B kg-1 seed was the most effective treatment in this regard. Increase in kernel yield, by B seed coating, was attributed to decrease in panicle sterility. Leaf and kernel B contents were increased with increase in B concentration in seed coating.
From an ethylmethane sulphonate-mutagenized M₂ population of Arabidopsis thaliana L. var Landsberg erecta, a mutant was isolated on the basis of its ability to germinate in the presence of a germination inhibitory concentration (0.35 mM) of spermine. The mutant produced yellowish green seeds that lacked a mucilaginous sheath, exhibited reduced dormancy and were generally viviparous under ambient conditions. Dose-response assays indicated increased resistance of the mutant to spermine but normal sensitivity to spermidine, putrescine and abscisic acid. The spermine resistance and the associated phenotype of the mutant was inherited as a single recessive nuclear mutation. Following the genetic analysis, spermine-resistant mutant has been designated as spr2. The results suggest a role for spermine in seed dormancy.
This study was conducted to investigate the benefits associated with re-drying after seed priming with polyamines. Wheat (cv. AS-2002) seeds were soaked in 10 and 20 mg L⁻¹ aerated solutions of spermidine (Spd), putrescine (Put) and spermine (Spm), and distilled water (CK2) for 12 h at 28 ± 2°C. Untreated seeds (CK1) and priming in distilled water (CK2) were taken as control treatments. Seeds were primed in two sets: In one set, after each treatment, seeds were given three surface washings with distilled water and dried closer to original moisture; in the other, seeds were only surface dried and used immediately. Use of surface-dried seeds after priming was more effective since it reduced emergence time and synchronized the emergence. Moreover, final emergence, shoot and root length, seedling fresh and dry weight were also improved. Improved starch metabolism was considered possible reason of seed invigoration. All the seed treatments resulted in a lower electrical conductivity of seed leachates compared with control; however, there was more decrease in seeds re-dried after priming than the seeds surface dried after priming. Although the effect of all the polyamines was stimulatory, Spd was the more effective for most of the attributes studied. Nonetheless, Put was more effective for seedling fresh and dry weights. All the polyamines were more effective at lower concentrations except Spm, which improved the coefficient of uniformity of emergence at high concentration. To conclude, if immediate sowing is possible, use of surface-dried seeds after priming may be more effective; seed priming with 10 mg L⁻¹ Spd was the most effective technique when surface dried.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.