Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Our study used a photocatalytic oxidation process for degrading slaughterhouse wastewater (SHWW). Characterization of the wastewater before and after treatment with TiO₂ and Ag-TiO₂ in terms of BOD, COD, and nitrogen was done. The effect of hydrogen peroxide, ozone, and various operating parameters such as catalyst dose, pH, and reaction time on the degradation efficiency of the process were also investigated. An increase in catalyst dose and reaction time increased process efficiency. However, process efficiency was decreased with elevating pH. The results also revealed that the type of catalyst and their operating parameters have significant influence on the oxidation of SHWW. Ag-TiO₂ -H₂O₂ catalyst under UV (400watt) irradiation was found to be best for the degradation of SHWW and resulted in 95% BOD, 87% COD, and 74% nitrogen removal.
Advanced oxidation processes (AOPs) have proven to be very effective for treating various hazardous organic pollutants in water. The present study uses a double-walled horizontal glass reactor (DHGR) to investigate heterogeneous UV/TiO2 (titanium dioxide) and UV/Ag-TiO2 (mobilized and immobilized) photocatalytic degradation of synthetic textile effluent (Remazol Red RGB) with UV (400W). The textile effluent was characterized in terms of pH, chemical oxygen demand (COD), and degree of decolorization (at 519 nm) before and after treatment. Optimum degradation results were obtained at pH3. We also found that with different catalysts and catalyst doses, the rate of degradation rises up to a maximum “critical” value. The electron scavenger was Ag-led to a faster degradation of synthetic textile effluent in the photocatalytic system. The photocatalytic degradation proved to be dependent on the effluents’ initial COD, catalyst dose, catalyst form, and pH of the medium. Results reveled that among different forms of catalysts, Ag-TiO2 (Mesh) and TiO2 (0.5 g) showed better COD percentage and ABS percentage removal at pH3 with initial concentrations of synthetic effluent 560mg/l under UV(400W) irradiation.
The textile industry is one of the largest producers of harmful effluent, and this has become a serious threat to the environment when disposed of into water bodies, which may lead to high pollution risk – especially in developing countries. There are several treatment methods ranging from conventional to advanced for treating textile effluent before disposal in the environment. Photocatalytic oxidation (AOPs) is the most sophisticated process among all other advanced oxidation processes. In this study, TiO2 and Ag-doped TiO2 were used for the photcatalytic degradation of synthetic textile effluent. TiO2 and Ag-doped TiO2 catalyst were synthesized through two routes of sol-gel method (M1 and M2 reported in our previous study) for mobilized and immobilized utilization purposes [1], and characterization of the catalysts was carried out through X-ray diffrectrometric analysis. XRD patterns showed that catalysts synthesized by both routs of sol-gel method were initially found in amorphous form as no peak appeared in an X-ray diffractrogram at 0ºC calcination (catalyst without calcinations), whereas with an increase of temperature the amorphous form of catalyst turned into crystalline. Results showed that TiO2 synthesized by the sol-gel route showed anatase phase at 350ºC, and peaks kept growing until 550ºC. Furthermore, at 650-750ºC anatase and rutile co-exist, while in Ag-doped TiO2, anatase appeared at 350-450ºC and at 550ºC anatase phase/silver co-existed, whereas at 650-750ºC anatse-silver-rutile co-existed. An X-ray diffractrogram showed that catalyst synthesized through the 2nd sol-gel route also possessed an amorphous nature at 350ºC and peaks of anatase phase of TiO2 appeared at 450ºC and kept growing sharper as temperature increased from 450-750ºC, whereas anatase peaks detected at 350ºC in Ag-TiO2, and anatase-silver co-existed at 450ºC and 550ºC. Hence, anatase disappearedand only silver metal peaks remained at 650-750°C. Degradation and decolorization results revealed that optimum photocatalytic activity was achieved by catalysts calcinated at 550ºC as 91.96% degradation (COD removal %) with Ag-doped TiO2 immobilized catalyst, and 99.57% decolorization (colour removal percentage) was achieved with Ag-doped TiO2 mobilized catalyst on 60 min treatment of synthetic textile effluent (Remazol red RGB: 10 ppm concentration, pH3). Results showed that Ag-doped TiO2 developed anatase crystalline phase at 550ºC that favored degradation and decolourization. The order of catalyst calcination at 550°C with respect to degradation was found as Ag-TiO2 (immobilized) > Ag-TiO2 (mobilized) > TiO2 (mobilized) > TiO2 (immobilized) and decolourization found as Ag-TiO2 (mobilized) >Ag-TiO2(immobilised)> TiO2 (immobilized) > TiO2 (mobilized).
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.