Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Reactive oxygen species play a crucial role for various physiological and developmental processes in plants. Here, we report a spatial pattern of oxidative stress and antioxidant defence within maize leaf. Localization of hydrogen peroxide in different region of leaf clearly exhibits well-defined increasing pattern of accumulation from the base to the leaf tip. Lipid peroxidation, an index of oxidative damage, also showed a similar pattern-like hydrogen peroxide that is lowest at the base and highest at the leaf tip. NADPH oxidase, an enzyme responsible for superoxide anion generation, showed highest activity in the leaf tip and least in the leaf base regions. Superoxide dismutase (SOD) activity was increased from the base to the leaf tip. Peroxidases, DAB-peroxidase (DAB-POD) and guaiacol-peroxidase (G-POD), catalase (CAT) and glutathione reductase (GR) also showed increases in their activities from the base to the leaf tip. Ascorbate peroxidase (APX), however, showed a reverse trend—highest at the base and least in the leaf tip. The decrease in APX and increases in the activities of other antioxidant enzymes SOD, CAT, DAB-POD, G-POD and GR along with H2O2 and lipid peroxidation, ascorbate/dehydroascorbate and non-protein thiol levels from the base to the leaf tip clearly exhibit a spatial pattern prior to the onset of visible signs of senescence in the maize leaf.
The SUMO-conjugating enzyme Ubc9 is an essential enzyme in the SUMO (small ubiquitin-related modifier) protein modification system. Although sumoylation, covalent modification of cellular proteins by SUMO, is considered to regulate various cellular processes, and many substrates for sumoylation have been identified recently, the regulation of Ubc9 expression has not been examined in detail. We analyzed the expression of Ubc9 during rat brain development at the mRNA and protein levels. Northern and Western blot analyses revealed that expression of Ubc9 and SUMO-1 was developmentally regulated, while that of the ubiquitin-conjugating enzyme UbcH7 did not change so dramatically. In situ hybridization analysis revealed that the expression of Ubc9 was high in neuronal stem cells and moderate in differentiated neurons at embryonic stages. In the adult brain, moderate expression was observed in subsets of neurons, such as the dentate granular neurons and pyramidal neurons in the hippocampal formation and the large pyramidal neurons in the cerebral cortex. These results suggest that the Ubc9-SUMO system might participate in the proliferation and differentiation of neuronal cells in the developing brain and in neuronal plasticity in the adult brain.
In this paper, we describe the isolation and characterization of two PC3 subclones. One subclone, mr, showed an epithelial phenotype, the other, M1, showed a sarcomatous morphology. Transplanted into nude mice, mr developed tumors at a dramatically faster rate than M1. Comparing the two subclones, differentially expressed genes were identified, including E-cadherin, IL-8 and STAG1/PMEPA1. These genes were expressed at higher levels in mr than in M1.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.