Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In coal mine fire rescues, if the abnormal increase of gas concentration occurs, it is the primary thing to analyze the reasons and identify sources of the abnormal forming, which is also the basis of judge the combustion state of fire area and formulate proper fire reliefs. Nowadays, related researches have recognized the methane explosion as the source of high concentration of H2 formation, but there are few studies about the conditions and reaction mechanism of gas explosion generating high concentration of H2.Therefore, this paper uses the chemical kinetic calculation software, ChemKin, and the 20L spherical explosion experimental device to simulate the generating process and formation conditions of H2 in gas explosion. The experimental results show that: the decomposition of water vapor is the main base element reaction (R84) which leads to the generation of H2.The free radical H is the key factor to influence the formation of H2 generated from gas explosion. With the gradual increase of gas explosion concentration, the explosive reaction becomes more incomplete, and then the generating quantity of H2 increases gradually. Experimental results of 20L spherical explosion are consistent with the change trend about simulation results, which verifies the accuracy of simulation analysis. The results of explosion experiments show that when gas concentration is higher than 9%, the incomplete reaction of methane explosion increases which leads to the gradual increase of H2 formation
An experiment was designed to investigate the tolerance and response of the Kosteletzkya virginica (L.) Presl to one-instar bollworms of Helicoverpa armigera (Hubner). In this experiment, the insects obviously brought an enhancement in damaged rate of leaf area (DRLA), average diameter of bitten hole (ADBH) and average grade of leaf damage (AGLD) in K. virginica seedlings. When amount of insect increased to 4 per top leaf, the average DRLA, AABH, ADBH and AGLD were 8.6%, 9.2 mm, 2.7 mm and 2.0 mm, respectively, and the seedlings showed a potential insect-tolerance to this insect stress. Furthermore, with an increase of insect density, MDA, relative permeability of membrane (RPM), O₂⁻ production and soluble sugar concentration all enhanced, whereas activities of SOD and POD increased and subsequently declined. By statistical analysis, it was drawn that biotoxicity of O₂⁻ was the first destroying factor, cell membrane decomposition ranked the second, and the destruction of membrane lipid peroxidation was the slightest to K. virginica seedlings. Moreover, under the insect stress, POD was the most significant factor in protecting the seedlings, soluble sugar acted as the subordinate one, and the protection of SOD was the slightest compared to two others. In addition, insect stress obviously affected chlorophyll-fluorescence characteristics, and resulted in a significant increase in Fo and qN, and a significant reduction in Fv/Fm, ETR and qP during experiment.
Planting shrubs on sand land and degraded pasture are two main measures for desertification control particularly in northwest China. However, their effects on soil organic carbon (SOC) and its fractions remain uncertain. We assessed the changes in stocks of SOC, light fraction of SOC (LF–SOC) and heavy fraction of SOC (HF–SOC) after planting Artemisia ordosica (AO, 17 years), Astragalus mongolicum (AM, 5 years) and Salix psammophila (SP, 16 years) in sand land and planting Caragana microphylla (CM, 24 years) on degraded pasture. Results show that: 1) after planting AO, AM and SP on sand land, SOC stocks increased by 162.5%, 45.2% and 70.8%, respectively, and LF–SOC accounted for a large proportion in the increased SOC. Dry weights of LF–SOC, rather than carbon concentrations, were higher in shrublands than that in sand land; 2) after planting CM on degraded pasture, SOC stock decreased by 9.3% and all the loss was HF–SOC in 60–100 cm soil layer where both herbaceous fine root biomass (HFRB) and soil water content (SWC) also decreased. The results indicate that planting shrubs can result in an increase of SOC in sand land, whereas that can lead to a decrease of SOC in degraded pasture. The increase of SOC in sand land mainly bases on the accumulation of dry weight of LF–SOC. The loss of SOC in degraded pasture is caused by the decrease of carbon concentrations of HF–SOC, which can be related to the reduction of HFRB and SWC in deep soil layer. Therefore, shrub-planting for desertification control not always improve the quantity and stability of SOC in northwest China.
In mainland China, the most popular pineapple cultivar is ‘Comte de Paris’. Gibberellic acids have been widely applied to enhance fruit growth in various species. To evaluate the effect of gibberellic acid (GA₃) on ‘Comte de Paris’ pineapple production and quality, pineapple fruits were sprayed with GA₃ at concentrations of 5, 20, 50, or 100 mg 1⁻¹ at both 0 and 15 days after flowering (DAF). Fruits were sampled every 15 days from 0 to 60 DAF (maturation) for flow cytometric analysis and histological observation. The results showed that the treatments with the three highest concentrations of GA₃ significantly increased fruit weight, and the most effective concentration was 50 mg 1⁻¹ GA₃, which increased the flesh weight by 20.3% compared to the control. Although treatment with GA₃ had little effect on the total soluble solids and fruit juice pH, it increased the vitamin C content. Although flow cytometric analysis showed that the 50 mg 1⁻¹ GA₃ treatment had only a slight impact on the number of S phase cells, histological observations indicated that the increase of fruit volume and flesh weight under this GA₃ treatment was not due to the increase of cell number but a result of the increase of cell area in the fruit flesh.
Heat shock protein 70 kDa proteins (Hsp70 s) are among the most important molecular chaperone groups and play a significant role in the stress responses and development of plants. In the present study, the full-length cDNA of the heat shock cognate 70 protein 2 gene EjHsc70-2, which encodes a loquat Hsp70 s member, was cloned and characterized, and its expression and subcellular localization were also investigated. The full-length cDNA of EjHsc70-2 consists of an open reading frame (ORF) of 1950 bp, a 5′-UTR of 103 bp, and a 3′-UTR of 62 bp, and the ORF encodes 649 amino acid residues. The structure of the loquat Hsc70-2 protein was analysed using several bioinformatics tools, and the results showed that the protein was, indeed, a member of the Hsp70 s. Phylogenetic tree analysis suggested that the genetic evolution of Hsc70-2 genes conformed well to the morphology based taxonomic classification of seed plants. BLAST and multiple alignment analyses determined that the Hsc70-2 genes and Hsc70-2 proteins were both highly conserved among loquat and other seed plants, suggesting that the functions of EjHsc70-2 might be similar to those of other Hsc70-2 genes. The bioinformatics and experimental subcellular localization analyses both supported that EjHsc70-2 was a cytoplasmic and/or nuclear protein. Quantitative real-time RT-PCR (RT-qPCR) suggested its conserved functions involved in loquat organ development. Moreover, EjHsc70-2 were also inducible, which may contribute to the low-temperature adaptation of loquat fruits in cold storage. These results provide new insights into the characteristics and functions of Hsp70 s in Eriobotrya japonica.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.