Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The reliability of microsatellite analyses for discriminating between plant accessions maintained in collections of genetic resources was tested for 53 accessions of barley, 65 of soybean, 49 of chickpea, and 19 of alfalfa. The specific primer pairs used in this study were based on microsatellite DNA sequences surrounded by perfect dinucleotide and imperfect trinucleotide tandem repeat units. The evaluated polymorphic information content, diversity index, and probabilities of identity indicate that there is value in the application of SSR analyses in barley, soybean, and chickpea genetic resource management. Variation between alfalfa genotypes was not revealed at the five analyzed microsatellite loci.
Nowadays, genetically modified plants are cultivated in many countries and it is important to consider their safety for surrounding environment. So, the environmental risk assessments of genetically modified plants are evaluated. This assessment consists of an objective evaluation of risk and involves generating; collecting and assessing of information on a GM plant with the aim to determine its impact on human or animal health and the environment relative to non-genetically modified organisms. One of the numerous methods used to investigate the impact of GM plants on the environment is the Terminal Restriction Fragment Length Polymorphism. This method was used for comparison of genetic variation in populations of bacteria isolated from rhizosphere of genetically modified maize MON810 carrying the gene cry1Ab and genetically non-modified maize. Rhizosphere samples were collected in Slovakia during two years (2008, 2009) in July and September and 16S rRNA gene was amplified from metagenomic DNA using universal eubacterial primers. Differences in the number of terminal restriction fragments between control and GM maize hybrids were not detected. Additionally, variation within bacterial communities composition from rhizosphere of MON810 and non-GM hybrids was not observed, nevertheless negligible differences in composition of bacterial community were observed between two sampling periods (July and September). These changes were observed in non-GM as well as in GM maize hybrids and reflected effects of environment and conditions, no influence of genetic modification. The 16S rDNA clone library creation from rhizosphere sample of MON810 maize followed by DNA sequencing revealed that the Proteobacteria were major group of bacteria and Actinobacteria, Firmicutes, and Chloroflexi were less represented. This study did not confirm any changes in the soil ecosystem, which would have been larger than normal variations caused by external conditions.
Microbiological and sensory evaluations of bread and ketchup supplemented with β-D-glucan hydrogels isolated from wheat, oat, barley, and rye were carried out. Adding hydrocolloids did not affect sensory parameters of bread negatively; moreover rye and oat β-D-glucans improved the total tastiness of bread. Water activity values in fortified breads showed β-D-glucans, except isolated from oat, as elements moderately increasing this parameter and subsequently increasing also bread freshness during the storage. All β-D-glucans resulted in softening the acidic taste of ketchup and did not negatively influence the total tastiness. Quality of fortified fresh tomato ketchups and stored for 180 days, were also not negatively influenced by the addition of hydrocolloids. Therefore, cereal hydrocolloids could be very perspective in the further exploitation in preparing new health-beneficial foods.
A set of Thatcher near-isogenic lines and two breeding lines were used to examine sequence tagged site (STS) markers linked to leaf rust resistance genes Lr9, Lr10, Lr19, Lr24, Lr28, Lr29, Lr35, and a simple sequenced repeat (SSR) marker for Lr39. The selected STS markers for resistance genes Lr9, Lr10, Lr19, Lr24 and Lr28 were identified in seven accessions by seven European laboratories. Near-isogenic lines of the spring wheat Thatcher were used as positive controls. Markers for resistance genes Lr9, Lr10, Lr19, Lr24 were identified in all seven laboratories as amplification products of 1100 bp, 310 bp, 130 bp and 310 bp, respectively. The STS markers linked to resistance genes Lr9, Lr10, Lr19, Lr24, Lr29, Lr35 and the SSR marker for Lr39 were robust and highly specific for these genes and will be useful in marker-assisted selection in wheat. However, the amplification product of 378 bp that corresponded with resistance gene Lr28 was detected in all accessions including genotypes lacking this gene in all seven laboratories. This marker needs to be improved.
Arsenic is a serious soil pollutant with toxic effects on biological systems. Elevated soil concentrations may negatively affect crop production and food safety. The impact of arsenic on plants depends on many factors, including nitrogen availability. Nitrogen (N) as an essential mineral affects overall energetics of plants, while its non-optimal doses have been shown to also impact plant performance and yield, as well as tolerance to environmental constraints. The combined effects of these two factors, however, have been rarely studied. Here we investigated the impact of sublethal doses of As³⁺ (5 mM) on wheat plants grown in hydropony, applying a set of 8 different N concentrations spanning from starvation (0 mM N in the media) through optimum (7.5 mM N) to excessive amounts (up to 35 mM N). The results showed that the content of photosynthetic pigments varies depending on N concentration and As³⁺ presence. The different energetic status of plants also affected the final As uptake. Establishing nutrition conditions might be important for limiting metal(loid) uptake from soil in contaminated areas.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.