Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Limited information from existing data sets and the tremendous amount of diversity in number and kind within the chiropteran family Vespertilionidae (about one-third of all bat species) have hampered efforts to provide adequate assessments of long-standing genealogic hypotheses (e.g., monophyly of the family and of the five subfamilies). We generated approximately 2.6 kilobase pairs of mitochondrial DNA (mtDNA) sequence ecompassing three adjacent genes (12S rRNA, tRNAVal, 16S rRNA) for 120 vespertilionids representing 110 species, 37 of 44 genera, and all subfamilies. We assessed monophyly of Vespertilionidae in initial analyses of 171 taxa including representatives of all bat families (except the monotypic Craseonycteridae), and assessed lower-level relationships by analysis of several truncated taxon sets. Phylogenetic analysis of ribosomal gene sequences provides well-supported resolution for vespertilionid relationships across taxonomic levels. Furthermore, the resolution is not heavily burdened by alignment of ambiguous regions of the ribosomal gene sequences, and topologies and levels of support produced by two phylogenetic methods (Bayesian and Parsimony) agreed markedly. Our analyses suggest relationships that support many parts of the traditional classification but which also support several changes. The majority of these changes also receives support from other data sources, particularly bacular and karyotypic data. We make more than 20 taxonomic conclusions or recommendations and construct a working classification for vespertilionoid bats. Highlights include: Miniopterus (subfamily Miniopterinae) is recognized in its own family, Miniopteridae, as it represents an extremely divergent lineage relative to other vespertilionids, and in some analyses is sister to the molossids and natalids; all other vespertilionids examined form a well-supported clade; two of the traditional subfamilies within Vespertilionidae (sensu stricto) are monophyletic, Murininae and Kerivoulinae; Nyctophilinae has no validity and Vespertilioninae is paraphyletic relative to the position of Myotis; Myotis is sister to a clade containing Kerivoulinae and Murininae and is recognized in its own subfamily, Myotinae; Myotis subgenera Leuconoe, Selysius, and Myotis are polyphyletic, and a subgeneric classification reflecting geography is suggested, broadening subgenus Myotis to include the sampled Old World species, and allocating the sampled New World species to another subgenus (Aeorestes Fitzinger, 1870); Vespertilioninae (excluding Myotis) is monophyletic; Pipistrellus-like bats (i.e., the traditional tribe Vespertilionini) are divided into three tribes (Nycticeiini; Pipistrellini; Vespertilionini); and support for three tribes of Pipistrellus-like bats has several implications at the genus level. Overall, this study offers a robust working hypothesis for vespertilionid relationships and provides a good starting point for new investigations into the evolutionary history of Vespertilionidae.
Thyroptera lavali (Chiroptera: Thyropteridae) is a rare Neotropical species that until now has been recorded from only five localities in the Amazonian rainforests of Peru, Ecuador, Venezuela, and Brazil. Fewer than 10 specimens of T. lavali exist and, accordingly, little is known about its distribution, natural history, and phylogenetic affinities. We report new records for the species from southeastern Peru. Together with other recently published records, these expand the known range of the species considerably, as well as increase our knowledge of its ecology. Thyroptera lavali seems to prefer primary forest near swamps, and probably roosts in palms; its reproductive pattern is similar to that of other Neotropical insectivorous bats, with parturition at the beginning of wet season. Finally, we used two different data matrices to assess its phylogenetic relationships: one of discrete morphological characters, the other of DNA sequences of mitochondrial genes. Both data sets support a sister relationship between T. lavali and T. tricolor, with T. discifera as the basal member of the genus Thyroptera.
Species diversity and species limits of the small fruit-eating bats, genus Dermanura (Phyllostomidae: Stenodermatinae) were examined. Estimates of species diversity based on classical morphological criteria (current taxonomy) were compared to diversity estimates based on monophyly and cytochrome-b sequence divergence. The most recent taxonomic list included nine species, whereas the genetic based list contained 11: anderseni, azteca, bogotensis, cinerea, glauca, gnoma, phaeotis, rava, rosenbergi, tolteca, and watsoni, of which three (bogotensis Andersen, rava Miller, and rosenbergi Thomas) have been considered synonyms of cinerea, glauca, phaeotis, and tolteca by previous authors. In addition, we consider incomitata to be a synonym of watsoni. Phylogenetic analyses of mtDNA sequences resolved the interrelationships among taxa and prompted us to re-evaluate some morphological characters that support the distinction of all the recognized taxa, therefore providing a robust estimate of species status. A phylogenetic tree revealed a geographic component to the diversification of Dermanura, including a historical connection between western Andean and Middle American biota. In South America, no species has been recorded from both sides of the Andes Mountains, and at least one clade (glauca, gnoma, and bogotensis) is restricted to the eastern versant of the Andes. Using genetic data (monophyly and genetic distance) to identify species we were able to produce testable genealogical and biogeographic hypotheses to facilitate further studies.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.