Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Background: The aim of the study was to designate changes in the expression of HSPA1A, HSPB1 and LDHb in elite rowers after completing a test “till exhaustion” on a rowing ergometer. Finally, we searched for the answer whether there are significant correlations between the expression of the genes and anaerobic threshold (AnT) or the maximal oxygen uptake (VO2max). Material/Methods: The research was conducted on the sample of 9 Polish lightweight male rowers (23.7 ±3.77 yrs, 72.7 ±1.76 kg, 183.6 ±4.58 cm). To determine AnT and VO2max, the subjects performed the test “till exhaustion” with an increasing load on a rowing ergometer. Directly before and after the test, blood samples were collected from the ulnar vein in order to isolate genetic material. RNA was extracted from white cells of venous blood by the chemical method. 2 µg RNA for the reverse transcription was used and the expression of HSPA1A, HSPB1 and LDHb was determined by Real time PCR reaction. To assess the intensity of expression, the ∆∆Ct method was used. Results: The study showed an increased expression of HSPA1A and HSPB1 and a decreased one of LDHb. Moreover, post-training changes of the genes activity in white blood cells occurred immediately and could be determined directly after the termination of exertion. Conclusions: No significant correlations between the expression of the genes and anaerobic threshold (AnT), maximal oxygen uptake (VO2max) were stated.
Background: The study aimed to assess the occurrence of fatigue and overtraining in spinning instructors based on subjective feeling (a questionnaire) and the expression of selected genes (IL6, IL10 and NF-kB mRNA). Material/Methods: Two research methods were used in the study: a subjective assessment in the form of a survey and an objective evaluation of the expression of genes related to the cellular stress response. The survey involved a group of 12 female spinning instructors 24–32 years old. Five subjects (mean age 26.4 years) agreed to have a blood sample taken for genetic analyses. The control group comprised four physically active women (mean age 25.5 years). For genetic analyses, two ml of venous blood were taken in the morning hours after a night’s rest. The relative evaluation of gene expression was performed using real-time quantitative PCR. Results: According to the questionnaire declarations, the instructors feel overtraining. It was observed that the concentration of the transcription factor NF-kB in peripheral blood at rest was significantly lower (p˂0.05) in the study group compared to the control one. The measurement of the IL6 encoding gene expression significantly differed (p˂0.05) between the two groups. In the case of the pro-inflammatory cytokine IL10, there were no significant differences between the two groups. Conclusions: According to the questionnaire declarations, spinning instructors feel overtraining, but simultaneously they are very well adapted to physical effort, which was confirmed by the analysis of the expression of genes related to the cellular stress response.
Background: Exercise-induced stressors activate leukocyte HSPA1A and HSPB1 gene transcripts. However it is not clear how plyometric training affects the expression of these genes in basketball players under plyometric exercise. Therefore, the aim of this study was to investigate the changes in leukocyte HSPA1A and HSPB1 mRNA, in male basketball players after plyometric training. Material/Methods: Twelve male college basketball players (age 22.1 ±2.96 years) took part in this study. Peripheral blood (2.0 ml) was collected from the ulnar vein of each participant before and after a plyometric exercise to assess HSPA1A and HSPB1 mRNA relative expression of leukocyte via quantitative reverse transcription polymerase chain reaction. Results: A significant increment of leukocyte HSPA1A mRNA expression (Qt from 1.67 ±0.93 to 3.17 ±0.97, p = 0.003) after plyometric exercise was found. However, there was no significant change in leukocyte HSPB1 mRNA expression, indicating the high stability of this gene during exercises. Conclusions: HSPA1A mRNA was found to be a very sensitive indicator and could be used to assess physiological adaptation to a physical load and time requirements for complete recovery in basketball players.
Development of neuropathic pain is accompanied by many changes in immune and glial cells. These changes correspond to activation of immune and glial cells that have been shown to influence the opioid effectiveness and can be modulated by minocycline (a potent inhibitor of microglial activation). In earlier study we have demonstrated that function of opioidergic neurons may be modulated by the immune system. These changes have been shown to be responsible for the efficacy of opioids. The aim of our study was to examine the effect of the minocycline-triggered inhibition of microglia activation on the injury-induced changes and the efficacy of mu and delta opioid receptor ligands in a rat model of neuropathic pain (chronic constriction injury to the sciatic nerve). In cell culture studies, we examined the influence of opioids (morphine, DAMGO, DPDPE, deltorphin II) on activated primary cultured rat microglia by using MTT and/or NO assays. All experiments were performed according to the IASP recommendations and were approved by a local Bioethics Committee. On the spinal cord level the injury to the sciatic nerve induced an up-regulation of IL-1beta, IL-6 expression, CX3CR1 and C1q (marker of microglia, macrophage and leukocyte activation). Chronic administration of minocycline not only diminished neuropathic pain-related behavior and C1q-positive cell activation, but also attenuate the changes in proinflammatory factors like IL1beta, IL-6 and CX3CR1 in the spinal cord and DRG. In in vivo experiments, the analgesic effects of mu-opioid (morphine and DAMGO), but not delta-opioid (DPDPE, deltorphin II) receptor ligands were lower in the rats under neuropathic pain. Moreover, the analgesic effects of morphine and DAMGO, but not DPDPE and deltorphin II were significantly potentiated by minocycline chronic administration. Our in vitro findings that non-stimulated microglia cells respond differently to opioids in comparisons with stimulated cells as measured by MTT and/or NO assays, corresponded well with the results of in vivo studies. Our study underlined that inhibition of microglial activation could differently influence analgesic effects of mu- but not delta-opioid ligands in injury-induced pathologies, which may influence the effect of various opioid drugs used in chronic pain therapy.
Anandamide (AEA) has emerged as a multifunctional lipid mediator of various stimuli. Latest reports suggest a role for AEA as an endovanilloid ligand, however, no data exist on the potential role of endogenous AEA upregulation in the spinal cord in neuropathic pain model. Rats chronically implanted with intrathecal (i.t.) catheters underwent sciatic nerve ligation (CCI model). The effect of selective inhibitor of AEA enzymatic hydrolysis, URB597 and the involvement of TRPV1 or cannabinoid CB1 receptors, were investigated. Measurements of allodynia and hyperalgesia were made 7 days after CCI and the levels of AEA in the spinal cord of CCI rats were determined. The spinal endovanilloid/endocannabinoid system was studied by means of qRT-PCR and western blott analysis in CCI rats. Finally, the distribution of TRPV1 and endovanilloid degradation enzymes were compared in the rat lumbar spinal cord. Depending on the administered dose, URB597 (10 – 200 μg/rat) reduced pain via CB1 or TRPV1 receptors. URB597 (10 – 100 μg) dose-dependently enhanced spinal AEA levels. Surprisingly those were reduced by 200 μg of URB597 suggesting an indirect effect of an endovanilloid/endocannabinoid AEA action at TRPV1. Alterations in lypoxygenases (LOX) mRNA support the idea of alternative ways of AEA metabolism. LOX-mediated production of hydroperoxides was associated with increased phospholipase A2 acitvity. Finally, baicalein by blocking the 12-LOX activity reduced the URB597 (200 μg) analgesic effect in CCI rats. We suggest that i.t. AEA reduces neuropathic pain by acting as an endovanilloid, on the he spinal cord TRPV1/ CB1 neurons. When endogenously up-regulated with URB597, AEA exerts analgesia via both receptors. Dependent on efficiency of FAAH a secondary route of AEA metabolism plays a role in CCI model. Moreover spinal lipoxygenase metabolites contribute to the AEA-mediated nociception in CCI model suggesting a complex interplay these systems in vivo. Supported by 0152/B/2008/35.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.