Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Changes in growth parameters, root and leaf anatomy, and stress hormone contents in Cd-stressed soybean (Glycine max L.) seedlings were investigated. Under treatment with 40 µM CdCl₂, the whole plant, root and leaf FW and DW significantly decreased. Also, the whole plant and root length decreased, as well as the chlorophyll and carotenoid contents. This heavy metal affected root and leaf anatomy. In comparison to control, root diameter increased as a consequence of the greater size of the cortex and the vascular cylinder area, and vascular tissues were markedly affected by Cd. In leaflets, the curvature of the mesophyll in internerval areas was observed after Cd treatment. Cd also affected the mesophyll thickness which was reduced by the presence of shorter and narrower cells of the palisade parenchyma. Jasmonic acid content dropped dramatically in Cd-stressed roots, meanwhile ABA and metabolites increased at different times of Cd stress suggesting their involvement in Cd response. ABA peaked at 24 h of Cd stress whereas a strong peak of ABA-GE appeared immediately after the ABA peak. DPA started increasing at 6 h of Cd treatment and the highest peak was recorded at 24 h, as well as the ABA peak. The DPA and ABA-GE contents were higher than the ABA ones Therefore, the alterations induced by the Cd-phytotoxic effect on the growth and anatomy of the soybean seedlings as well as on the ABA and JA root content suggest a possible involvement of these hormones on the sensing and response mediation of these compounds in the organ that first senses the stress.
The two cultivars of Digitaria eriantha: cv. Sudafricana (a cold-sensitive cultivar) and cv. Mejorada INTA (a cold-resistant cultivar) were exposed to low temperature andcompared in terms of the involvement of abscisic acid (ABA) and catabolites, jasmonates, and antioxidant defense in cold tolerance. Cold stress caused a greater ABA increase in cv. Mejorada INTA than in cv. Sudafricana. In both cultivars abscisic acid glucose ester and dihydrophaseic acid were the most abundant catabolites. Cold treatment decreased JA in leaves of both cultivars. In cv. Sudafricana, 12-hydroxyjasmonate (12-OH-JA) decreased and 12-oxophytodienoic acid increased. In regard to antioxidant defense, both cultivars increased the non-protein thiols in response to cold stress. However, reduced glutathione (GSH) level was higher in leaves of cv. Mejorada INTA than cv. Sudafricana. Cold-treated leaves of cv. Sudafricana increased thiobarbituric acid-reactive substances (TBARS), but cv. Mejorada INTAleaves showed no such increase. Superoxide dismutase activity decreased and ascorbate peroxidase activity increased in cold-treated leaves of cv. Sudafricana. No significant change of these enzymes was observed for cv. Mejorada INTA. The cold tolerance of cv. Mejorada INTA could be related to JA, 12-OH-JA andGSHhigh basal contents, ABA increase, and TBARS stability after cold treatment.
Two cultivars of Digitaria eriantha (cold-sensitive cv. Sudafricana and cold-resistant cv. Mejorada INTA) were exposed to cold stress (5 °C) for 0, 6, 24, or 72 h, and compared in terms of leaf and root growth, recovery period, shoot and leaf anatomy, and levels of chlorophyll, auxin (indole-3-acetic acid, IAA) and cytokinins (CKs). In Sudafricana, cold treatment caused reduced growth, slight changes in chlorophyll level, reduced levels of IAA and CK iso-pentenyladenine (iP), and reduced leaf dry weight (DW) and fresh weight (FW) during the recovery period. Anatomical damage was observed in chloroplasts, main stem, and axillary buds. Ultrastructural study showed reduced numbers of starch grains in chloroplasts of the bundle sheath and mesophyll. In Mejorada, cold treatment had no significant effect on growth or chlorophyll level. Leaf DW and FW quickly returned to normal levels during the recovery period. Anatomy of ground meristem was affected, but ultrastructure of bundle sheath and mesophyll chloroplasts was not. The cold tolerance of cv. Mejorada appears to be related to the stability of chlorophyll and CK levels, increase of IAA, and maintenance of normal shoot and leaf anatomy and ultrastructure.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.