Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Picrorhiza kurrooa, one of the important plant species among the various medicinal plants, is endemic to Himalaya. As the plant is useful in the treatment of various diseases, e.g., hepatic disorders, gastric troubles, anemia, asthma, etc., illegal collection from the wild is increasing and now this plant is banned for export in any form and listed as ‘endangered’. Ecological studies carried out on this species in last few decades suggested that the availability of this species in its specific habitats is comparatively lower than other associate species. Possible factors responsible for this depletion are increasing demand in the pharmaceutical industries, habitat specificity, heavy exploitation from the wild, unorganized cultivation practices etc. Biotechnology is playing a crucial role to conserve this important plant species. The past 23 years have witnessed a progressive biotechnological advances made in P. kurrooa. People have published various reports on establishments of in vitro culture techniques including micropropagation, synthetic seed production, plant regeneration via callus-mediated shoot organogenesis, adventitious shoot regeneration, genetic transformation through Agrobacterium rhizogenes, secondary metabolite analysis etc. This review attempts to focus on present ecological status and provide a comprehensive account on the tissue culture-mediated biotechnological interventions made in P. kurrooa for improvement and conservation of this medicinally important plant.
Aconitum violaceum Jacq. is an important medicinal species used for various health ailments including renal pain, rheumatism and high fever. In the present report, a reproducible in vitro regeneration system for Aconitum violaceum Jacq. has developed from the nodal segment of the plant. Induction of shoot buds was achieved on basal Murashige and Skoog (MS) medium. The shoots were elongated on MS medium supplemented with 0.5 μM 6-benzylaminopurine (BAP) and 0.1 μM α-napthaleneacetic acid (NAA) and subsequently transferred to rooting medium. In vitro grown microshoots of A. violaceum were encapsulated in the alginate beads. The success rate of their re-growth was found to be approximately 85.43 %. Of the encapsulated microshoots, 39.86 % exhibited formation of multiple shoots following re-growth on plant growth regulator free MS medium. Healthy root formation was observed in all microshoots following 2 weeks of transfer on half-strength MS medium containing 0.1 lM indole-3- acetic acid (IAA) and 1.0 μM α-naphthalene acetic acid (NAA). These plants were subsequently transferred to pots containing a mixture of soil, sand and compost (1:1:1 v/v), and same were then shifted in the greenhouse with 87 % survival rate. The molecular analysis was carried out using 35 random amplified polymorphic DNAs (RAPD) primers and 25 inter simple sequence repeats (ISSR) primers. Cluster analysis of the RAPD and ISSR profile revealed an average similarity coefficient of 0.966 and 0.974, respectively, confirming genetic stability of tissue culture-raised (TR) plants and synthetic seed-derived plants (SR). The phytochemical analysis of tissue culture-raised and synthetic seeds-derived plants showed higher aconitine content than control plant. The propagation protocol developed in this study provides a basis for germplasm conservation and harnessing the medicinally active compounds of A. violaceum.
Genetic stability and phytochemical analysis of in vitro established plants of Picrorhiza kurroa Royle ex Benth, have been carried out. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of tissue culture products including three adventitious shoots from three calli and 6 months old tissue culture raised plants growing in green house condition with mother plant. Apparent genetic variation was detected in the five types of plant materials. The percentage of polymorphic bands in the RAPD and ISSR analysis were 16.25 and 14.54 %, respectively. The genetic similarity was calculated on the basis of RAPD and ISSR data among the five types of plant materials and were ranged from 0.5 to 1.0 (mean 0.75) and 0.47 to 1.0 (mean 0.73), respectively. The similarity coefficient by both RAPD and ISSR analysis revealed that differences between tissue culture raised plants and mother plant was not remarkable, but notable differences were observed among three adventitious shoots regenerated from three calli. The phytochemical analysis of tissue culture raised products showed higher secondary metabolite (picrotin and picrotoxinin) content as compare to mother plant. The information gained on genetic stability/variability will be valuable for the large scale propagation and secondary metabolite production of P. kurroa.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.