Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
This is a review of the growing scientific interest in the developmental plasticity and therapeutic potential of stromal cells isolated from adipose tissue. Adipose-derived stem/stromal cells (ASCs) are multipotent somatic stem cells that are abundant in fat tissue. It has been shown that ASCs can differentiate into several lineages, including adipose cells, chondrocytes, osteoblasts, neuronal cells, endothelial cells, and cardiomyocytes. At the same time, adipose tissue can be harvested by a minimally invasive procedure, which makes it a promising source of adult stem cells. Therefore, it is believed that ASCs may become an alternative to the currently available adult stem cells (e.g. bone marrow stromal cells) for potential use in regenerative medicine. In this review, we present the basic information about the field of adipose-derived stem cells and their potential use in various applications.
Recently, stem cell biology has become an interesting topic, especially in the context of treating diseases and injuries using transplantation therapy. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Ideally, stem cells for regenerative medical application should be found in abundant quantities, harvestable in a minimally invasive procedure, then safely and effectively transplanted to either an autologous or allogenic host. The two main groups of stem cells, embryonic stem cells and adult stem cells, have been expanded to include perinatal stem cells. Mesenchymal stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in case of genetic disorders. This review highlights the characteristics and therapeutic potential of three human mesenchymal stem cell types obtained from perinatal sources: Wharton’s jelly, the amnion, and the chorion.
Background: Human milk, in addition to nutrients, contains many biologically active substances including immunoglobulins, growth factors, cytokines, and a diverse population of somatic cells. Breast milk involves no risk of allergy, contains antibodies, and contains factors such as epidermal growth factor (EGF) and erythropoietin, which may promote the growth and repair of skin cells. The discovery of stem cells and the HAMLET complex in breast milk has led to increased interest in human milk as a natural medicine. Aim of the study: The aim of the study was to identify the effect of topical application of breast milk on the separation time of the umbilical cord stump in newborns. Case report: This paper presents the case of a patient who decided to treat her child’s umbilical cord stump with colostrum/breast milk because her two older children had experienced long umbilical stump separation times. As a result of this treatment, separation of the stump occurred 90 hours after labor. There were no abnormalities in the construction of the navel, complications, or separation disorders of the umbilical cord stump. Conclusions: This research demonstrates that colostrum/mother’s milk was used as an easy, cheap, effective, and natural method of umbilical cord care.
Tissue formation and maintenance is regulated by various factors, including biological, physiological and physical signals transmitted between cells as well as originating from cell-substrate interactions. In our study, the osteogenic potential of mesenchymal stromal/stem cells isolated from umbilical cord Wharton's jelly (UC-MSCs) was investigated in relation to the substrate rigidity on polyacrylamide hydrogel (PAAM). Osteogenic differentiation of UC-MSCs was enhanced on stiff substrate compared to soft substrates, illustrating that the mechanical environment can play a role in differentiation of this type of cells. These results show that substrate stiffness can regulate UC-MSCs differentiation, and hence may have significant implications for design of biomaterials with appropriate mechanical properties for regenerative medicine.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.