Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
INTRODUCTION: Retinal signals pass through the dorsal lateral geniculate nucleus (dLGN) of the thalamus to target the primary visual cortex. Besides the driver input from the eye, dLGN also receives substantial modulatory projections from layer 6 of cortex and the brainstem, which exert strong influence on the dLGN cells. Thalamic neurons have two switching modes of firing activity: tonic and burst. Bursts comprise a number of closely spaced action potentials, followed by a long refractory period between bursts. AIM(S): The aim of the present study was to determine whether activity of the rat dLGN depends on alternating brain states in terms of its spontaneous activity, firing mode (tonic and bursting) and light-induced responses. METHOD(S): Extracellular single-unit in vivo and EEG recordings combined with white light stimulations were performed in 19 adult Long Evans rats under urethane anaesthesia. Light-induced responses, bursting parameters and correlation between spontaneous neuronal activity and EEG were analysed. RESULTS: In total, 22 light-responsive neurons were recorded and all of them were characterized by burst firing mode detected in both EEG phases. Spontaneous activity of 68% of cells was modulated by EEG changes with significant decrease during the deactivation. Moreover, during that phase the percentage of bursts was higher, while neuronal responses to light were significantly reduced. CONCLUSIONS: The dorsal lateral geniculate nucleus of the thalamus comprises of two subpopulations of light-sensitive cells, which are distinguished by their sensitivity to cyclic brain alternations under urethane anaesthesia. Interestingly, bursting cells within dLGN are involved in visual signal transmission in a state dependent manner. FINANCIAL SUPPORT: Supported by: 2013/08/W/ N23/00700, DS/MND/WBiNoZ/IZ/18/2016.
The lateral geniculate nucleus (LGN) is a retinorecipient thalamic structure serving both vision and non-vision forming functions. Subpopulation of LGN neurons is characterised by isoperiodic, infra slow oscillation (ISO; <0.01 Hz) in the rate of action potential firing. This ISO is common in the subcortical visual system and is synchronised among nuclei innervated by the same eye. Recently a new feature of light responsive neurons in the suprachiasmatic nuclei (SCN) has been described – harmonic distribution pattern (HDP) of interspike intervals (ISI), revealing fundamental frequency of ca. 30 Hz. The aim of this study was to determine the existence of HDP in the firing of the rat LGN. Single- or 32-channel extracellular recordings of neuronal firing were performed on in vivo (urethane anaesthesia) and in vitro preparations of Wistar rat brain. In vivo recordings were performed in experimentally controlled lighting conditions and during alternating brain states determined by EEG monitoring. We have discovered harmonic distribution pattern (HDP) of interspike intervals (fundamental ISI ~25–30 ms) in half of the in vivo recorded LGN and OPN neurons that were characterised by ISOs, but not in vitro. HPD was resistant to sustained light changes, although altered by transient (5 s) light pulses. Inactivation of contralateral retina (TTX injection) abolished HDP observed in LGN. HDP was correlated within each LGN and OPN and also between ipsilateral nuclei. For the first time we show that in LGN and OPN there is a subpopulation of neurons that fires in synchrony, governed by common HDP. Our results, combined with observation in SCN, allow as to propose the retina as a common source of HDP in light-responsive neurons and bring us closer to understanding the function of widespread retinal innervation of the mammalian brain. FINANCIAL SUPPORT: Supported by MSHE grant: 0001/ DIA/2014/43
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.