Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Background: Platelet derived growth factors (PDGFs) are key components of autocrine and paracrine signalling, both of which play important roles in mammalian developmental processes. PDGF expression levels also relate to oxygen levels. The characteristics of yak PDGFs, which are indigenous to hypoxic environments, have not been clearly described until the current study. Materials and methods: We amplified the open reading frame encoding yak (Bos grunniens) platelet derived growth factor-alpha (PDGFA) from a yak skin tissue cDNA library by reverse transcriptase polymerase chain reaction (PCR) using specific primers and Sanger dideoxy sequencing. Expression of PDGFA mRNA in different portions of yak brain tissue (cerebrum, cerebellum, hippocampus, and spinal cord) was detected by quantitative real-time PCR (qRT-PCR). PDGFA protein expression levels and its location in different portions of the yak brain were evaluated by western blot and immunohistochemistry. Results: We obtained a yak PDGFA 755 bp cDNA gene fragment containing a 636 bp open reading frame, encoding 211 amino acids (GenBank: KU851801). Phylogenetic analysis shows yak PDGFA to be well conserved, having 98.1% DNA sequence identity to homologous Bubalus bubalus and Bos taurus PDGFA genes. However, 8 nucleotides in the yak DNA sequence and 4 amino acids in the yak protein sequence differ from the other two species. PDGFA is widely expressed in yak brain tissue, and furthermore, PDGFA expression in the cerebrum and cerebellum are higher than in the hippocampus and spinal cord (p > 0.05). PDGFA was observed by immunohistochemistry in glial cells of the cerebrum, cerebellum, and hippocampus, as well as in pyramidal cells of the cerebrum, and Purkinje cell bodies of the hippocampus, but not in glial cells of the spinal cord. Conclusions: The PDGFA gene is well conserved in the animal kingdom; however, the yak PDGFA gene has unique characteristics and brain expression patterns specific to this high elevation species. (Folia Morphol 2017; 76, 4: 551–557)
Determining the effect of water deficit during vegetative growth periods on grain yield will provide reasonable strategy for water-saving management of winter wheat (Triticum aestivum L.). Pot experiment was conducted using winter wheat cultivar (Yangmai16) to investigate the effects of water deficit during vegetative periods on post-anthesis photosynthetic capacity and the relationship with grain yield formation during the growing season of 2013–2014. Water deficit consisted of moderate (leaf water potential of -1.20 to -1.40 MPa) and severe (leaf water potential of -1.80 to -2.20 MPa) levels during tillering and jointing growth stages, respectively. Moderate water deficit during tillering significantly increased grain yield through an enhanced yield capacity per stem and moderate water deficit during jointing resulted in similar grain yields as compared to control, while severe water deficit during both periods significantly reduced grain yield due to strong reduction in number of spikes as compared to control. Moderate or severe water deficit during tillering had no effect on flag leaf area but reduced it significantly when it occurred during jointing. Water deficit treatments during jointing and tillering increased net photosynthetic rate (Pn) of flag leaves, the treatment during jointing being the most stimulatory. The maximum photochemical efficiency of Photosystem II, actual photochemical efficiency, the maximum carboxylation rate and photosynthetic electron transport rate increased in ways similar to Pn in response to water deficit but non-photochemical quenching decreased. We conclude that improved photosynthetic capacity by moderate water deficit during vegetative growth period highly contributes to grain yield, especially during tillering period, while grain yield decreased by the limitation of leaf area and spikes under severe water deficit.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.