Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Two alternative opinions on geographic variation and taxonomy of the genus Otonycteris are available in the literature; (1) the genus is rather invariable and includes one monotypic species, or (2) local populations of the genus are rather diverse and create up to five subspecies and/or represent a complex of more species. We analysed a relatively extensive material of Otonycteris from all essential parts of its distribution range, using both morphological and molecular genetic approaches to revise taxonomic status of the genus. Results of our analysis suggest rather manifold taxonomic arrangement of the genus. Morphological comparisons of cranial and bacular characters revealed three distinct geographically separated morphotypes in the set of examined bats; (1) in North Africa and in the western part of the Middle East (Levant and Mesopotamia), (2) in the eastern part of the Middle East (E Arabia and Iran) and (3) in Central Asia (incl. NE Iran, Afghanistan and Pakistan). Molecular genetic comparisons of two mitochondrial genes revealed two deeply separated clades differing in uncorrected p-distances at > 11.8% (cytochrome b) and > 9.3% (ND1), respectively. These clades correspond with two groups of morphotypes, (1 2) and (3), and we therefore regard the respective populations as two separate species, O. hemprichii and O. leucophaea. Within the species rank of O. hemprichii sensu stricto, three sublineages were found, each tentatively considered to be a separate subspecies.
The objective of the study was to describe the diet composition of western barbastelle bat (Barbastella barbastellus), its seasonal changes and main factors determining trophic niche of the species. Barbastelle bat feeds predominantly on moths and has the narrowest trophic niche within the entire studied bat community. A comparison of the food supply and the diet composition showed selectivity for larger species of moths. An increasing of absolute abundance of preferred larger moths within summer is accompanied with narrowing of bat's trophic niche. This pattern corresponds well with the conclusions of optimal foraging theory. Larger moths are preferred even in a period of their low relative abundance within a peak of abundance of smaller species. There are no abrupt seasonal changes in the bat's diet within season, but the narrow pool of available food supply seems to determine the trophic niche breadth within low prey diversity periods in early spring and late autumn. The exception is a late autumn period; most probably due to a change in food supply are preferred larger moths replaced in the diet by smaller individuals. Most of the moths' species cease to fly and chiefly only smaller moth species are flying and attracted by UV light. Larger moths still occur at studied area at that time, but they display minimal flying activities and they are detected using vegetation beating and sweeping. Furthermore, syntopic motheating foliage gleaner (Plecotus auritus) still feeds on larger moths at that time. This may indicate that the change in the diet of B. barbastellus is a consequence of poor or absent gleaning abilities of this species, which is not able to pick up the prey from the surface as P. auritus. Different hunting strategies are probably efficient trophic niche partitioning mechanisms reducing interspecific competition between these syntopic moth eating bats.
The distribution of pipistrelles of the Pipistrellus pipistrellus complex (= P. pipistrellus s.l.) reaches only marginally the African continent. These bats are known only from a narrow belt of the Mediterranean zone in Maghreb and from NE Libya. We analysed museum specimens of African populations of P. pipistrellus s.l. using both morphologic and genetic techniques and compared them with Eurasian specimens of the complex. The African representatives of P. pipistrellus complex include two morphologically, genetically and geographically distinct populations. One of them inhabits the Mediterranean part of Cyrenaica, Libya. Belonging to the P. pygmaeus genetic lineage, these bats are represented by larger and more rusty coloured individuals with large massive rostrum and canines. In morphologic traits, this population differs significantly from all Western Palaearctic populations of the P. pipistrellus complex. These bats differ by about 6–7% in genetic distance from P. pygmaeus s. str. Within the P. pygmaeus lineage Libyan bats seem to be unique in their echolocation calls: the maximum energy of terminal frequencies was recorded at about 45 kHz. We consider the Libyan pipistrelles to represent a separate species, Pipistrellus hanaki sp. nov. Another distinct African pipistrelle population inhabits the Mediterranean parts of NW African countries, Morocco, Algeria and Tunisia. Individuals from the latter population are small and somewhat darker members of the P. pipistrellus genetic lineage, with relatively short and narrow mesial part of rostrum. Although both morphological and genetic differences between this population and Eurasian P. pipistrellus s. str. were found (genetic distance about 3–5%), they are probably not sufficient for the separation of this form at the specific level. However, the differences from European samples show rather not a cline character and therefore potential subspecific level of NW African P. pipistrellus has to be taken into consideration.
A new species of the genus Pipistrellus is described from the Dhofar region, southern Arabia. The new species occurs in a very limited area lesser than 1,000 km2, situated in the belt of relative humid savannah habitats of coastal Arabia between easternmost Yemen and south-western Oman. This bat represents the eighth pipistrelle species known from Arabia and fourth bat species endemic to southern Arabia. The new species is positioned morphologically and genetically very close to the group of the Oriental species of the genus Pipistrellus and represents the westernmost offshoot of the Oriental vespertilionid bat fauna, isolated for more than 1,500 km across the Indian Ocean from the area of continuous distribution of this fauna in the Indian Subcontinent.
A diverse syntopic bat community was studied in Central Europe. The study was primarily aimed at forest bats utilizing a foliage-gleaning foraging strategy (Myotis nattereri, M. bechsteinii and Plecotus auritus). The results indicated the foliage-gleaning foraging strategy and the effective resource partitioning. Once a certain diet item comprises an important food resource for one bat species, it is usually exploited much less by the other two bat species, and despite important seasonal dietary changes this pattern lasts throughout the entire season. Dietary composition varies more among the entire guild of forest foliage-gleaning bats than it does between these species and their morphological siblings or evolutionarily related species (e.g., Plecotus auritus vs. P. austriacus or Barbastella barbastellus, Myotis nattereri vs. M. emarginatus). The results are not fully consistent with the predictions of sensory ecology, which presume that bats with longer ears feed more frequently on prey that generates sound. The results do not support the hypothesis that rare bats exploit a narrower range of prey. The relatively rare M. bechsteinii has a wider trophic niche, whereas the more common P. auritus exploits a narrower range of prey. Comparison of dietary composition and morphological and echolocation parameters indicates that larger species feed on harder prey, species with longer ears are moth-eating specialists and species with a higher call intensity exploit small dipterans, probably in uncluttered habitats.
Two species are currently recognised within the genus Asellia, a typical inhabitant of arid areas of northern Africa and south-western Asia. Most of the distribution range of the genus is covered by Asellia tridens, while the other species, A. patrizii, is restricted to Ethiopia, Eritrea and several Red Sea islands. We analysed the morphological variation in an extensive set of Asellia samples covering the range of the genus, including most of the available type material. In a representative subset of samples, we employed molecular genetic analysis to infer the phylogenetic relationships within the broadly distributed A. tridens. Morphological comparisons revealed four distinct morphotypes. Except for the endemic A. patrizii, almost all African Asellia were found to belong to the same morphotype as most of the Middle Eastern specimens. This morphotype was unambiguously identified as A. tridens. Two other morphotypes of tentative A. tridens were further recognised based on skull shape differences; one in the southern Arabian region of Dhofar, the other in Socotra and Somalia. Phylogenetic analysis of complete sequences of the mitochondrial cytochrome b gene yielded three main monophyletic groups, which corresponded to the morphotypes revealed for A. tridens. Significant genetic divergences reaching over 5% and 12%, respectively, were discovered between them. Based on the morphological and molecular data obtained, we propose a split of the current A. tridens into three separate species: A. tridens in northern Africa and most of the Middle East, A. italosomalica in Socotra and Somalia, and Asellia sp. nov. in southern Arabia. Molecular dating, along with the available paleontological information and geological history of the Arabian Peninsula, supports an Arabian origin of the contemporary Asellia. While profound divergence of the Socotran form may be linked to the split of Socotra from the southern Arabian coast in the Middle Miocene, the low sequence variation of Asellia in most of Africa and the Middle East suggests a relatively recent colonisation of this vast area during the Pleistocene. The newly described form from southern Arabia most likely represents a relic of aridisation during the Miocene-Pliocene transition.
The study reports on chromosomes in several populations of social voles from south-eastern Europe and the Middle East. The standard karyotypes of individuals of Microtus hartingi and Microtus guentheri originating from both south-eastern Europe and Asia Minor comprised 54 mostly acrocentric chromosomes. However, variation between populations was found in the amount and distribution of C-heterochromatin in certain autosomes and the sex chromosomes. Furthermore, a specific pattern of argyrophilic nucleolar organizer region distribution was recorded in different geographic populations. In a population from Asia Minor, a heterozygous centric fusion of two autosomes was found. The G-banded karyotypes of M. guentheri and Microtus socialis were compared, and tandem fusions of autosomes were suggested as possible mechanism of the divergence. The karyotypes of the nine currently recognized species of social voles are reviewed, and implications of chromosomal data for systematics are evaluated.
The Afrotropical leaf-nosed bat Hipposideros caffer has been traditionally regarded as a complex of populations, currently pertaining to two recognized cryptic species, H. caffer and H. ruber. Extent of distribution and morphological variation of these bats has raised concerns over whether the current perception of the complex reflects true phylogenetic relationships and taxonomic diversity. Our phylogenetic analysis of nucleotide sequences of the mitochondrial cytochrome b gene challenged the hypothesis of two cryptic species. Instead of the two reciprocally monophyletic lineages expected, corresponding to the two species, we recovered four distinct lineages with deep internal divergences. Two sister clades within a lineage of bats of H. caffer represent respectively the nominotypical form H. c. caffer, restricted to Southern Africa, and H. c. tephrus, inhabiting the Maghreb, West Africa and the Arabian Peninsula. Geographical isolation and deep genetic divergence suggest species status of both the forms. Another lineage comprises specimens of both morphotypes from West and East Africa. It probably represents a distinct species but its taxonomic assignation remains obscure. A Central African lineage of H. ruber comprises two sister clades, which become sympatric in Cameroon. Their status has to be clarified with additional evidence, since nuclear gene flow might be taking place. A further divergent lineage with H. ruber morphotype, most probably representing another distinct species, is restricted to West Africa. Although all three genetic forms of H. ruber may correspond to named taxa, their proper taxonomic assignation has to be assessed by comparison with type material.
We describe the echolocation calls, flight morphology and diet of the endemic Chinese bat Myotis pequinius Thomas, 1908. Orientation calls are broadband, and reach low terminal frequencies. Diet comprised 80% beetles by volume. Wing shape and call design suggest that the bats fly in cluttered habitats, and the possession of moderately long ears and the dietary composition imply they forage at least sometimes by gleaning. Myotis pequinius resembles a larger Oriental version of the western Palaearctic species M. nattereri. Phylogenetic analysis based on sequences of the cytochrome b gene of mitochondrial DNA (1,140 base pairs) from a range of Palaearctic Myotis species confirmed that M. pequinius is close to the nattereri group, and is a sister-species to the eastern Palaearctic M. bombinus. One bat sequenced from China could not be identified from available species descriptions. It was smaller than M. pequinius, and also differed from it in sequence divergence by 6.7%, suggesting the existence of additional, cryptic taxonomic diversity in this group. Our phylogenetic analysis also supports the recognition of M. schaubi as a species distinct from M. nattereri in Transcaucasia and south-western Asia. Myotis nattereri tschuliensis is more closely related to M. schaubi than to M. nattereri, and is best considered either as a subspecies of M. schaubi, or possibly as a distinct species.
With the recent and continuing discovery of further cryptic bat species, it is essential to find morphological species discriminating characters. Pipistrellus pipistrellus (common pipistrelle) and Pipistrellus pygmaeus (soprano pipistrelle) have been recognized as separate species since 1997, but no reliable morphological species discriminating trait has yet been found. The most commonly used morphological species discrimination traits are ‘wing vein’ pattern and shape and color of the penis, but these have not been validated on sets of genetically identified specimens. The baculum (os penis) has long been used successfully in species discrimination in bats and other mammals. In this study, we tested the reliability of the established traits and demonstrated how to reliably separate the common pipistrelle and the soprano pipistrelle by simple baculum measurements. The bacula of museum specimens of these two species and of Pipistrellus hanaki were imaged with high-resolution microCT. Several measurements were taken on the size-calibrated volume images, and their value for species discrimination was tested by discriminant analysis with leave-one-out cross validation. We showed that P. pipistrellus and P. pygmaeus specimens can be discriminated by measuring the projected length, height, and width of the baculum (n = 48; all but one classified correctly). Geometric morphometrics was used to analyze and locate variations in baculum shape. Principal component analysis of baculum variation was not sufficient to separate these species. Most of the interspecific variation in baculum shape can be found in the proximal third (the base) of the baculum, and most individual variation can be observed in lateral view, especially in the dorsoventral curve. Quantitative details of morphology are becoming more important to distinguish cryptic species and understand their phylogeographic distributions. The simple baculum measurements can be used to classify single specimens and could be taken without microCT, on a resected baculum.
Two mitochondrial lineages of bats that are morphologically attributed to Hipposideros ruber have been shown to occur sympatrically in southeastern Senegal. We studied genetic diversity in these bats in the Niokolo Koba National Park using sequences of mitochondrial cytochrome b gene to determine the taxonomie status of the two genetic forms, and included skull morphology for comparison. Detailed multidimensional analysis of skull measurements indicated slight morphological differences between the two genetic forms. Exploration of peak frequency of the constant-frequency echolocation signals in a local population of Hipposideros aff. ruber was not available for both groups. Phylogenetic comparison with other available West African representatives of H. aff. ruber revealed paraphyletic relationship of the two Senegalese forms, with the less abundant form from Senegal forming a monophyletic group with that from Benin. Based on genetic divergence and sympatric occurrence, the two forms from Senegal might represent cryptic species. However, absence of nuclear gene flow between them is yet to be investigated to demonstrate their reproductive isolation.
Otomops martiensseni is sparsely distributed throughout sub-Saharan Africa and southwestern Arabia (Yemen). Otomops madagascariensis from the dry portions of Madagascar is widely recognised to be a distinct species. Based on mitochondrial DNA sequences of the cytochrome b gene (1,004 base pairs; n = 50) and the control region (D-loop, 290 base pairs; n = 52), two Oriental outgroup species (O. wroughtoni and O. cf. formosus) formed a monophyletic clade that was the sister group to the Afro-Malagasy taxa, composed of O. martiensseni and O. madagascariensis. Within the Afro-Malagasy clade, we discovered three well-supported but genetically similar clades (inter-clade genetic distances of 3.4–4.4%) from 1) north-eastern Africa and Arabia, 2) African mainland except northeast Africa, and 3) Madagascar. Taken together, haplotype networks, estimated divergence times, regional species richness and historical demographic data tentatively suggested dispersal from Asia to Africa and Madagascar. To understand ecological determinants of phylogeographic, biogeographic and genetic structure, we assessed the potential distribution of O. martiensseni throughout sub-Saharan Africa with ecological niche modelling (MaxEnt) based on known point localities (n = 60). The species is predicted to occur mainly in woodlands and forests and in areas of rough topography. Continuity of suitable habitats supported our inferred high levels of continental gene flow (relatively low genetic distances), and suggested that factors other than habitat suitability have resulted in the observed phylogeographic structure (e.g., seasonal mass migrations of insects that might be tracked by these bats). Based on a Bayesian relaxed clock approach and two fossil calibration dates, we estimated that African and Oriental clades diverged at 4.2 Mya, Malagasy and African clades at 1.5 Mya, and African clades 1 and 2 at 1.2 Mya. Integrating phylogenetic, phylogeographic, population genetic and ecological approaches holds promise for a better understanding of biodiversity patterns and evolutionary processes.
Between 2001 and 2008, we recorded Myotis alcathoe at nine sites within three distant areas in the Czech Republic. The species identification was confirmed with cyt b sequences and four distinct haplotypes were identified. All the localities exhibit surprisingly uniform habitat characteristics: (1) old full-grown oak-hornbeam forests, with (2) numerous large trees in advanced stages of decay are present, and (3) a very small to large water bodies and/or patches of riparian vegetation surrounded by the forest. Using radiotracking techniques, we discovered 27 day roosts of M. alcathoe, located mostly in big oak, birch and lime trees inside extensive forest stands. All roosts were fissures or small cavities in a tree trunk and in branches in the canopies, some 16 m above the ground. Bats preferred trees that were higher, had higher canopy and canopy basement and had larger diameter at breast height than other available trees. Roost trees were surrounded by lower trees with lower canopy basements than available trees. Roost trees were in a poorer condition than other available trees. Roosts were occupied by up to 83 individuals in July but usually single individuals were found in the roosts in September. In contrast to syntopic M. mystacinus and M. brandtii, M. alcathoe has never been found in an anthropogenic roost (except for a fissure in concrete electricity pole). Preliminary analysis of the diet showed that nematoceran flies were the most important prey item along with spiders, caddis flies, small moths and neuropterans. In the observed ecological characteristics, M. alcathoe markedly differs from other European species of the genus Myotis. Its restricted habitat requirements are perhaps responsible for an islet-like pattern of its distribution and suggest an essential conservation value of the habitats of its occurrence.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.