Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The determination of surface pressure (π) of a phosphatidylserine (PS) monolayer is used to study the interactions between specific phospholipid classes and various proteins. In the present study we show that ATP, but not ADP, in milimolar concentration ranges stimulate the increase of Δπ in a PS monolayer evoked by annexin VI (AnxVI)/Ca2+ at a moderate initial π (~11 mN/m). The obtained results are consistent with ATP being a functional ligand for AnxVI. To further study the ATP binding site of AnxVI, we have used fluorescein 5’-isothiocyanate (FITC). This is useful in the characterization of nucleotide-binding sites of many membrane integral and cytosolic proteins. Under our experimental conditions FITC did not affect the binding of AnxVI to membranes but abolished the interaction of the protein with ATP insolubilized on agarose. This observation can be interpreted in terms of AnxVI possessing an ATP-binding site functionally similar to nucleotide-binding domains characterized in other ATP-dependent proteins. We also provide evidence that two AnxVI isoforms are expressed constitutively in porcine liver differ from each other in respect to their ATP binding properties.
Annexin VI (AnxVI) from porcine liver, a member of the annexin family of Ca2+- and membrane-binding proteins, has been shown to bind ATP in vitro with a Kd in the low micromolar concentration range. However, this protein does not contain within its primary structure any ATP-binding consensus motifs found in other nucleotide-binding proteins. In addition, binding of ATP to AnxVI resulted in modulation of AnxVI function, which was accompanied by changes in AnxVI affinity to Ca2+ in the presence of ATP. Using limited proteolytic digestion, purification of protein fragments by affinity chromatography on ATP-agarose, and direct sequencing, the ATP-binding site of AnxVI was located in a C-terminal half of the AnxVI molecule. To further study AnxVI-nucleotide interaction we have employed a functional nucleotide analog, Cibacron blue 3GA (CB3GA), a triazine dye which is commonly used to purify multiple ATP-binding proteins and has been described to modulate their activities. We have observed that AnxVI binds to CB3GA immobilized on agarose in a Ca2+-dependent manner. Binding is reversed by EGTA and by ATP and, to a lower extent, by other adenine nucleotides. CB3GA binds to AnxVI also in solution, evoking reversible aggregation of protein molecules, which resembles self-association of AnxVI molecules either in solution or on a membrane surface. Our observations support earlier findings that AnxVI is an ATP-binding protein.
Polyethylene glycol (PEG) induces fusion of cells creating fused cell pairs and larger cell aggregates. However the precise mechanism of its action on cell membranes remains unclear. In the present study we attempted to determine how PEG interacts with the membrane of red blood cell. It is known that PEG, at concentrations that induce cell fusion, causes strong swelling of erythrocytes which appeared to be insensitive to elevated ionic strength of the solution. This swelling, as well as fusion rate, is independent of the initial shape of erythrocytes induced by various amphiphiles. PEG at the concentrations usually used as a fusogen induced haemolysis (up to 50%). Again, this effect was not inhibited by elevated ionic strength of the buffer. Further experiments revealed that PEG changes membrane properties such as surface pressure of lipid monolayers prepared from total erythrocyte lipids and mobility of acyl hydrocarbon chains of membrane lipids as measured using 5-doxyl stearate as a spin probe.
Porcine liver annexin VI (AnxVI) has recently been described to bind in vitro ATP. The binding of nucleotide to protein is accompanied by modulation of AnxVI function, such as its' interaction with F-actin and membranes. In the present report, we show that ATP modulates AnxVI-driven aggregation of phosphatidylserine (PS) liposomes. In addition, we provide evidence using circular dichroism (CD) that the interaction of AnxVI with ATP evokes changes in secondary structure of the protein. The functional implications of these changes are also discussed.
Annexin VI (AnxVI), an Ca2+- and phospholipid-binding protein, interacts in vitro with ATP in a calcium-dependent manner. Experimental evidence indicates that its nucleotide-binding domain which is localized in the C-terminal half of the protein differs structurally from ATP/GTP-binding motifs found in other nucleotide-binding proteins. The amino-acid residues of AnxVI directly involved in ATP binding have not been yet defined. Binding of ATP to AnxVI induces changes in the secondary and tertiary structures of protein, affecting the affinity of AnxVI for Ca2+ and, in consequence, influencing the Ca2+ -dependent activities of AnxVI: binding to F-actin and to membranous phospholipids, and self-association of the annexin molecules. These observations suggest that ATP is a functional ligand for AnxVI in vivo, and ATP-sensitive AnxVI may play the role of a factor coupling vesicular transport and calcium homeostasis to cellular metabolism.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.