Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In the last decade contradictory results have been published as to whether exogenous salicylic acid (SA) can increase salt stress tolerance in cultivated plants by inducing an antioxidant response. Salt stress injury in tomato was mitigated only in cases when the plant was hardened with a high concentration of SA (~10-4 M), low concentrations were ineffective. An efficient accumulation of Na+ in older leaves is a well-known response to salt stress in tomato plants (Solanum lycopersicum cv. Rio fuego) but it remains largely unexplored whether young and old leaves or root tissues have a distinct antioxidant status during salt stress after hardening with 10-7 M or 10-4 M SA. The determination of superoxide dismutase (SOD) and catalase (CAT) activity revealed that the SAinduced transient increases in these enzyme activities in young leaf and/or root tissues did not correlate with the salt tolerance of plants. Salt stress resulted in a tenfold increase in ascorbate peroxidase (APX) activities of young leaves and significant increases in APX and glutathione reductase (GR) activities of the roots hardened with 10-4 M SA. Both total ascorbate (AsA) and glutathione pools reached their highest levels in leaves after 10-7 M SA pre-treatment. However, in contrast to the leaves, the total pool of AsA decreased in the roots under salt stress and thus, due to low APX activity, active oxygen species were scavenged by ascorbate non-enzymatically in these tissues. The increased GR activities in the roots after treatment with 10-4 M SA enabled plants to enhance the reduced glutathione (GSH) pool and maintain the redox status of AsA under high salinity, which led to increased salt tolerance.
Heavy metals (HMs) are toxic pollutants, which can negatively affect the physiological processes of plants; moreover, HMs can be present in the food chain endangering people’s health. The aim of this study was to investigate the early physiological events during HM exposure in the root tips of the food plant Pisum sativum L. Ten-day-old pea plants were treated with 100 µM CdCl₂ or CuSO₄, in nutrient solution for 48 h. We studied the rapid formation of different reactive oxygen species (hydrogen peroxide H₂O₂ and superoxide radical O₂⁻) and reactive nitrogen species (nitric oxide NO and peroxynitrite ONOO⁻) together with membrane damage and cell death in the meristem cells of pea roots using in vivo and in situ microscopic methods. In our experimental system, copper and cadmium induced the formation of H₂O₂ and NO. Two hours of heavy metal treatments resulted in an increased O₂⁻ formation; however, later the level of this reactive molecule dramatically decreased. We found that high levels of NO were needed for ONOO⁻ production under HM exposure. A fast loss of membrane integrity and decreased cell viability were detected in root tips of copper-treated plants. The effects of cadmium seemed to be slower compared to copper, but this non-essential metal also caused cell death. We concluded that viability decreased when NO and H₂O₂ levels were simultaneously high in the same tissues. Using the NO scavenger it was also evidenced that NO generation is essential for cell death induction under copper or cadmium stress.
The effects of increasing osmotic stress induced by 100–400 mOsm (-0.976 MPa) polyethylene glycol (PEG 6000) were investigated in a drought-tolerant (Triticum aestivum L. cv. Mv Emese) and drought-sensitive (cv. GK Élet) wheat cultivar at the three-leaf stage. During osmotic stress, the decline of the water potential (ψw) was more significant in the leaves, while the abscisic acid (ABA) levels of the roots increased earlier and remained higher in the sensitive than in the tolerant variety. There was an increasing gradient of ABA content toward the youngest leaves in the drought-sensitive GK Élet, while more ABA accumulated in the fully developed, older leaves of the tolerant cultivar Mv Emese. In accordance with the rapid and significant accumulation of ABA, the stomatal conductance decreased earlier in the tolerant cultivar. The effect of water stress on the PSII photochemistry was pronounced only 1 week after the exposure to PEG, as indicated by the earlier decrease of the net CO2 fixation, the effective quantum yield (ΦPSII) and the photochemical quenching (qP) in light-adapted samples of the tolerant variety in 400 mOsm PEG 6000. The stress treatment caused more significant reductions in these parameters toward the end of the experiment in the sensitive cultivar. In spite of small differences in the photosynthetic characteristics, the net biomass production was not significantly altered by this osmotic stress. The accumulation of ABA controlled the distribution of the biomass between the shoot and root systems under osmotic stress, and contributed to the development of stronger and deeper roots in the drought-sensitive cultivar GK Élet. However, the root elongation did not correlate with the drought sensitivity of these cultivars on the basis of crop yield.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.