Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Climate change continuously threatens sustainable development. As the largest energy consumer and carbon emitter in the world, China is facing increasing pressure to cut carbon emissions. Based on Moran’s index I and geographically weighted regression, this paper investigates the spatiotemporal characteristics and the dominating factors of China’s province-level carbon intensity in the construction industry from 2005 to 2014, which is aimed at providing a scientific basis for government while implementing a regional-oriented carbon emissions reduction strategy. The empirical results are shown as follows. Firstly, carbon intensity in the construction industry of each province has been decreasing in the past 10 years. Secondly, provincial carbon intensity in this sector shows significant positive spatial autocorrelation characteristics and the degree of spatial clustering of carbon intensity tended to weaken in this period. Third, according to the analysis of the geographically weighted regression (GWR) model, carbon intensity is positively affected by energy intensity while the labor input and production efficiency both have negative effect. Particularly the regression coefficient of labor input is almost twice as large as the other two factors. The results reveal that there is a significant spatial disparity of these three factors in different provinces.
Although irrigation and temperature are predominant factors in tomato productivity in greenhouses, there is a lack of information on how these factors interact. Here, we examined single-factor responses and the interaction of three levels of irrigation (80, 100 and 120% of evapotranspiration) and two temperatures (normal temperature range of 13–30 °C and chilling temperature range of 4–24 °C) on growth, gas exchange, and antioxidant metabolism in relation to water uptake of pot-grown tomato plants (Solanum lycopersicum L. ‘No. 1 Jinpeng’). Lower growth was observed with the 80 and 120% irrigation levels than with the 100% treatment. Our results suggest that irrigation at 100% of evapotranspiration is the optimal level for ameliorating the chilling sensitivity of tomato, because this level of irrigation may enhance relative water content as well as nitrogen content to maintain the photosynthesis rate and reduce the damage to cells by reactive oxygen species (ROS). The adverse effects of 80 and 120% levels of irrigation might be attributable to a decreased photosynthesis rate and increased ROS accumulation, which would result in increased cell damage. Therefore, the use of irrigation at 100% of evapotranspiration is the best choice to support the acclimatization of tomato seedlings to chilling temperatures.
The construction industry has played an important role in reducing carbon emissions. Various policies have been implemented to stimulate construction enterprises to reduce carbon emissions, but the effects of emission reduction are not obvious, for they do not directly benefit the enterprises. This paper employs a modified Shapley value method to study benefit allocation in a construction supply chain considering carbon emissions. Four correction factors are proposed for modifying the initial allocation, namely the contribution rate of inputs, the risk-sharing coefficient, the degree of cooperation and the contribution rate of carbon emissions. We analyze carbon emissions based on an illustrative example of a concrete supply chain consisting of a cement manufacturer, a concrete manufacturer and a construction enterprise, and present our findings. First, the enterprises intend to cooperate to achieve the greatest benefit, and second, the benefit allocation is greatly affected by carbon emissions. Participants that produce more carbon emissions have higher carbon tax costs, which reduce profits. Further suggestions are also presented, which may help enterprises reduce carbon emissions. And policy makers should arrive at a suitable level of carbon tax to promote the smooth progress of projects and to improve the emission reduction effect.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.