Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The aim of this pilot study was to determine the baseline state of oxidative stress indices in patients with Parkinson's disease (PD). Peripheral blood samples of 15 PD subjects were analyzed and compared with ten age matched healthy controls. Patients with PARK2 mutations were also compared with PD patients without mutations. There was significant increase in malondialdehyde content and superoxide-dismutase (SOD) activity in peripheral blood parameters in PD patients (p > 0.05) in comparison to controls. These findings suggest an important role of oxidative stress in Parkinson's disease evolution and progress. No changes were observed in glutathione peroxidase and nitric oxide levels. We found significant correlation between SOD activity and lipid peroxidation when the biochemical data was further analyzed. In addition, significant increase in the levels of SOD among the PD patients with PARK2 mutations was observed, which can be ascribed to chronic oxidative stress induced by PARK2 mutations.
Chickpea seeds of Pusa 1053 (Mediterranean) and Pusa 256 (native) were magnetoprimed with 100 mT static magnetic field for 1 h to evaluate the effect of magnetopriming on germination of seeds under saline conditions. Enhanced rate of germination and seedling growth parameters (root and shoot length, and vigour indices) under different salinity levels indicated that magnetopriming was more effective in alleviating salinity stress at early seedling stage in Pusa 1053 as compared to Pusa 256. Dynamics of seed water absorption in magnetoprimed seeds showed increased water uptake in Pusa 1053 under non-saline as compared to saline conditions. This could have resulted in faster hydration of enzymes in primed seeds leading to higher rate of germination. Total amylase, protease and dehydrogenase activities were higher in primed seeds as compared to unprimed seeds under both non-saline and saline conditions. Production of superoxide radicals was enhanced in germinating seeds of both the genotypes under salinity irrespective of priming. Increased levels of hydrogen peroxide in germinating magnetoprimed seeds, under both the growing conditions, suggested its role in promotion of germination. Our results showed that magnetopriming of dry seeds of chickpea can be effectively used as a pre-sowing treatment for mitigating adverse effects of salinity at seed germination and early seedling growth.
The impact of rising atmospheric CO₂ on crop productivity and quality is very important for global food and nutritional security under the changing climatic scenario. A study was conducted to investigate the effect of elevated CO₂ on seed oil quality and yield in a sunflower hybrid DRSH 1 and variety DRSF 113, raised inside open top chambers and exposed to elevated CO₂ (550 ± 50 µl⁻¹). Elevated CO₂ exposure significantly influenced the rate of photosynthesis, seed yield and the quality traits in both hybrid and variety. Plants grown under elevated CO₂ concentration showed 61–68 % gain in biomass and 35–46 % increase in seed yield of both the genotypes, but mineral nutrient and protein concentration decreased in the seeds. The reduction in seed protein was up to 13 %, while macro and micronutrients decreased drastically (up to 43 % Na in hybrid seeds) under elevated CO₂ treatment. However, oil content increased significantly in DRSF 113 (15 %). Carbohydrate seed reserves increased with similar magnitudes in both the genotypes under elevated CO₂ treatment (13 %). Fatty acid composition in seed oil contained higher proportion of unsaturated fatty acids (oleic and linoleic acid) under elevated CO₂ treatment, which is a desirable change in oil quality for human consumption. These findings conclude that rising atmospheric CO₂ in changing future climate can enhance biomass production and seed yield in sunflower and alter their seed oil quality in terms of increased concentration of unsaturated fatty acids compared with saturated fatty acids and lower seed proteins and mineral nutrients.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.