Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The present report describes an original protocol for in vitro direct induction of roots from leaf explants of gerbera for the first time. Since gerbera has immense potential as a premium cut-flower, the major attempts were made on in vitro mass propagation chiefly through in vitro multiple shoot proliferation or callus regeneration. Nevertheless, rhizogenesis could be impending an unattempted method with its yet-to-be known advantages. In our study, the optimum conditions for direct root induction from leaf explants were assessed employing tissue culture technique. Leaves were inoculated to MS medium containing no or variable auxin sources and concentrations namely, 2,4- dichlorophenoxyacetic acid, indole-3-acetic acid (IAA), indole-3-butyric acid or α-naphthaleneacetic acid for root induction. It was evident that the maximum root induction (with a frequency of 92.6 %) occurred on MS media fortified with 1.5 mg l⁻¹ IAA, wherein root induction was observed as early as 11 days of culture and an average of ~19 roots with ~13 mm length was obtained from 4 cm² leaf segment after 45 days of culture. Stereo microscopic observation revealed the induction of roots and gradual developmental stages of rhizogenesis. The efficiency of direct root induction without any interim growth stages (such as, callus or shoots) in our study offers a reproducible system that could provide a model protocol for more comprehensive developmental studies on root growth.
This work reports on the cryopreservation of immature zygotic embryonic axes (EA) of petai (Parkia speciosa Hassk.) for the first time. Two cryopreservation protocols, namely desiccation and vitrification method were tested individually using excised EA. Desiccation of EA to lower moisture content (MC) reduced the survival percentage but a drastic decline in survival percentage (*20 %) was recorded at 16 % MC prior to exposure to LN, rendering the EA to be sensitive to desiccation. Cryopreservation of EA after desiccation, irrespective of the MC, did not result in any survival. On the other hand, post-cryopreservation survival was obtained when the EA were exposed to plant vitrification solution-2 (PVS2) for 75–105 min. The best results were obtained when the EA were exposed to PVS2 for 90 min with an average recovery of 55.5 %. EA recovery into whole plantlets was obtained when the EA were cultured on MS medium supplemented with 2 gl-1 activated charcoal and 0.1 mgl-1 of the plant growth regulators α-naphthalene acetic acid, 6-benzylaminopurine and gibberellin A3, each. EA, exposed for less than 75 min and more than 105 min to PVS2, did not show any survival after cryopreservation. The optimization of exposure time is necessary to increase survival. This study has shown that the employment of suitable method is important for conservation using cryopreservation.
A comparative phenotypic and morpho-histological study was carried out on tissue culture-derived truncated leaf syndrome (TLS) and wild-type oil palm seedlings to investigate their phenotypic and morpho-histological differences. On the basis of the percentage of TLS occurence in a clone, the TLS seedlings were categorized into three groups: severe (70–100%), moderate (40–69%) and mild (\40%). Wild and TLS seedlings differ in terms of growth, vigor, leaf size and shape, root number, volume, length as well as the size of shoot apical meristem (SAM). Differences were also found in fresh weight of leaf, root and SAM of TLS in comparison to wild-type seedlings. Depressed and wavy leaf surface, sunken and distorted stomata and coalesced epidermal cells were observed by scanning electron microscopy in TLS seedlings. The size, shape and number of stomata were also different in the TLS leaf compared to the wild type. Longer epidermal cells, depressed epidermal layer, larger sub-epidermal cells and loosely arranged less mesophyll cells were observed in TLS leaf than in wild type. Undifferentiated vascular bundle was found in TLS leaves where metaxylem and phloem were absent and root tips were impaired. The size and leaf primordial arrangement of SAM were remarkably different in TLS compared to wild-type seedlings suggesting that these alterations might be due to smaller SAM. Therefore, further detailed genetic analysis on TLS SAM is needed for clear understanding of TLS occurrence.
In the present study, we report the in vitro development of polyembryoids with identification of a definite stage that can be used for subsequent uniform plantlet regeneration in oil palm (Elaeis guineensis Jacq.). Induction and maturation of polyembryoids was accomplished when cell suspension culture was transferred in MS (Murashige and Skoog, Physiol Plant 15:473–497, 1962) semisolid medium consisting of 30 g L-1 sucrose and 3.5 g L-1 gelrite devoid of any plant growth regulator. Growth and development of cell suspension culture into polyembryoids were assessed by stereo and scanning electron microscopy (SEM) to identify the sequential events as well as the differentiation that occur during each stage. Observations on the differentiation symptoms showed that the embryos pass through distinct morphological characteristics indicating distinctively varied stages. SEM observations indicated the development of extracellular network at an early stage of differentiation and acts as the structural marker of differentiation leading to the development of polyembryoids via formation of globular proembryo and haustorium. Eventually, a specific developmental stage comprising haustorium and torpedo-shaped structure was identified, for conservation, regeneration or multiplication, based on the embryogenic competence.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.