Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
To investigate the photoinhibition of photosynthesis in ‘Honeycrisp’ apple (Malus domestica Borkh. cv. Gala) leaves with zonal chlorosis, we compared pigments, CO₂ assimilation and chlorophyll (Chl) a fluorescence (OJIP) transient between chlorotic leaves and normal ones. Chl and carotenoids (Car) contents, Chl a/b ratio, and absorptance were lower in chlorotic leaves than in normal ones, whereas Car/Chl ratio was higher in the former. Although CO₂ assimilation and stomatal conductance were lower in chlorotic leaves, intercellular CO₂ concentration did not differ significantly between the two leaf types. Compared with normal leaves, chlorotic ones had increased deactivation of oxygen-evolving complexes (OEC), minimum fluorescence (Fₒ), dissipated energy, relative variable fluorescence at L-, W-, J- and I-steps, and decreased maximum fluorescence (Fm), maximum quantum yield for primary photochemistry (Fv/Fm or φRₒ/ABS), quantum yield for electron transport (ETₒ/ABS), quantum yield for the reduction of end acceptors of photosystem I (PSI) (uRo and REₒ/ABS), maximum amplitude of IP phase, amount of active photosystem II (PSII) reaction centers (RCs) per cross section (CS) and total performance index (PItot,abs). In conclusion, photoinhibition occurs at both the donor (i.e., the OEC) and the acceptor sides of PSII in chlorotic leaves. The acceptor side is damaged more severely than the donor side, which possibly is the consequence of over-reduction of PSII due to the slowdown of Calvin cycle. In addition to decreasing light absorptance by lowering Chl level, energy dissipation is enhanced to protect chlorotic leaves from photo-oxidative damage.
Adventitious roots (ARs) play an irreplaceable role in the uptake of water and nutrients due to under-developed principle root in plants. The process of ARs formation is affected by plant hormone. In this study, by employing High-Throughout Tag-sequencing Technique and ELISA method, we analyzed of the transcriptome and indole-3-acetic acid (IAA) content to monitor the changes of metabolism regulated by ethylene signaling in lotus. Exogenous application of ethephon (ethylene precursor) dramatically accelerated ARs development, and while restrained by 1-methylcyclopropene (1-MCP, the ethylene perception inhibitor), indicating the crucial role ethylene in ARs development. Transcriptomic analysis showed that both treatment of ethephon and 1-MCP dramatically altered the expression of numerous genes. In total, transcriptional expressions of 694 genes were induced and 554 genes were suppressed in ETH/CK0 stages compared with MCP/CK0 stages. Most of these up-regulated genes exhibited the one-three folds changes. In ETH/MCP libraries, we found nine and five genes involved in the metabolism or transcriptional responses to ethylene and IAA, and fourteen genes, which were considered to NAC, bHLH, AP2-EREBP, MYB, LOB, bHLH and bZIP families, respectively, exhibited an increase in transcriptional level. In addition, an enhanced mRNA levels of seven genes [1-aminocyclopropane-1-carboxylate oxidase (ACO), leucine-rich repeat receptor, pectinesterase, pyruvate decarboxylase, ethylene oxide synthase, respiratory burst oxidase homolog protein and xyloglucan endotransglucosylase] relevant to ARs formation were detected in was detected in ETH/MCP libraries. Furthermore, we found that IAA content was obviously decreased after applications were detected on ethephon and 1-MCP. However, the decreased IAA level in 1-MCP treatment was more pronounced than that in ethephon treatment, and kept a low level during the whole periods of ARs development. Taken together, our findings provided a comprehensive understanding of ethylene’s regulation during ARs formation in lotus seedlings.
DREBs are believed to participate in plant responses to adverse environmental factors by activating down-stream stress-inducible genes. In this study, we isolated an NnDREB2 from a salt-resistant lotus species using RT-PCR and RACE methods. Expression profiling by realtime PCR technique revealed that NnDREB2 enhanced transcriptional level when treated with NaCl and exogenous ABA, and while its expression was not significantly changed with mannitol or 4 C treatments. NnDREB2 was transformed into Arabidopsis with a binary vector (SN1301) construct to identify its function. After selection of ‘positive’ transgenic plants, transgenic and non-transgenic plants (wild type plants) were treated with 250 mM NaCl. We found that the plants overexpressing NnDREB2 led to higher salt resistance than that of the wild type plants according to their survival rates. In addition, NnDREB2 expression exhibited higher germination rates and better root growth than in control plants on MS medium containing various concentration of NaCl. Down-stream target stress-related genes were also analyzed, and we observed that NnDREB2 overexpression activated stress-responsive genes such as PIP1-2, PIP2-5 and PIP2-7 in transgenic Arabidopsis plants. Totally, our findings suggested that the NnDREB2 participated in an ABA-dependent pathway, and might play an important role in plant for salt stress adaptation by directly binding with the DRE element tnemeto regulate down-stream gene expression in salt-resistant lotus.
Sucrose is the principal form of photosynthesis products, and long-distance transport of sucrose requires sucrose transporters (SUTs) to perform loading and unloading functions. SUTs play an important role in plant growth, development and reproduction. In this study, five unique sucrose transporter (SbSUT) genes that contain full-length cDNA sequences were cloned from sweet sorghum, and these SbSUT genes were clustered into four different clades: SUT1, SUT3, SUT4 and SUT5. Heterologous expression of SbSUTs in yeast demonstrated that they were functional sucrose transporters. Tissue-specific expression profiles showed that sorghum SUT genes had different tissue-specific expression patterns, suggesting that sorghum SUT genes may play an important role in plant growth and developmental processes. After defoliation, expression patterns of SbSUT1, SbSUT2 and SbSUT4 were different in leaf sheaths, leaves and roots. Taken together, the results indicate that the above mentioned five unique sucrose transporter genes may play important roles in performing sucrose loading and unloading functions and that they exhibit different expression in response to leaf blade removal.
To elucidate the salt tolerance of Malus halliana Koehne and Malus robusta Rehd., changes of photosynthetic parameters, hormone content and chlorophyll degradation enzymes of them were compared after treated with different concentration of NaCl. Salt stresses were simulated using 50, 100, 200 mM of NaCl solution, and 1/2 Hoagland nutrient solution was used instead of NaCl solution as control (CK). Except for the indole acetic acid (IAA) content, the changes of Chlorophyll (Chl) content, net photosynthetic rate (PN), stomatal conductance (gs), IAA/ABA ratio, intercellular CO₂ concentration (Ci), transpiration rate, abscisic acid content (ABA), Pheophytinase (PPH) and Pheophorbide a monooxygenase (PaO) in Malus halliana were lower than those in Malus robusta under 100 and 200 mM NaCl condition. The values of Chlase, PPH and Pao in Malus robusta were significantly higher than that in Malus halliana. According to correlation analysis, the Chl was extremely positively correlated with Chla, Chlb, IAA/ABA, PN and gs, significantly negative correlation with Chla/b, ABA and PaO, and negative correlation with Ci, Chlase and PPH. The chloroplast ultrastructure of Malus robusta was greatly damaged resulting in chloroplasts disintegration and that of Malus halliana was maintained to be completed at 100 and 200 mM NaCl. In certain range of salt concentrations, Malus halliana could be better to adjust the levels of Chlorophyll content, Chlase, PPH, PaO and the number of starch grain and osmiophilic granules to relieve the damage of photosynthetic system due to salt stress. In a word, the Malus halliana could be better adapted to high salt concentration than Malus robusta.
Cold-induced sweetening is one of the major factors limiting the quality of fried potato products. To understand the mechanisms of protein regulation for cold-induced sweetening in potato tubers, a comparative proteomic approach was used to analyse the differentially expressed proteins both during control (25°C, 30 days) and cold treatment (4°C, 30 days) using two-dimensional gel electrophoresis. Quantitative image analyses indicated that there were 25 protein spots with their intensities significantly altered more than twofold. Of these proteins, 9 were up-regulated, 13 were down-regulated, 2 were absent, and 1 was induced in the coldstored tubers. The MALDI-TOF/TOF MS analyses led to the identification of differentially expressed proteins that are involved in several processes and might work cooperatively to maintain metabolic homeostasis in tubers during low-temperature storage. The preponderance of metabolic proteins reflects the inhibition of starch re-synthesis and the accumulation of sugars in carbon fluxes, linking starch–sugar conversion. The respiration-related proteins suggest the transfer of respiratory activity from aerobic respiration to anaerobic respiration in the cold-stored tubers. The proteins associated with defence appear to protect the tuber cells from low-temperature stress. Some heat shock proteins that act as chaperones also displayed a differential expression pattern, suggesting a potentially important role in cold-stored tubers, although their exact contribution remains to be investigated. The proposed hypothetical model might explain the interaction of these differentially expressed proteins that are associated with cold-induced sweetening in tubers.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.