Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Genome-wide gene expression profiling was conducted by Solexa sequencing in order to gain insight into the transcriptome dynamics that are associated with salt stress of cotton seedlings. A total of 145,794 and 138,518 clean tags were generated from the control and salinity libraries, respectively. Of these, 75,500 (51.8%) and 72,077 (52.0%) tags were matched to the reference genes. The most differentially regulated tags with a log2ratio >2 or >-2 (P <0.001) were analyzed further, representing 125 up- and 171 down-regulated genes except for unknown transcripts, which were classified into ten functional categories. The most enriched categories were those of metabolism, signaling pathway, environmental response and transcription. Many genes or biological pathways were found to be commonly shared between salt and other abiotic stresses in plants such as genes participating in environmental response, ABA signaling JA signaling, etc. Furthermore, the expression patterns of 12 genes were assessed by quantitative real-time PCR, and the results obtained showed general agreement with the Solexa data. Further analysis indicated the important roles of selected genes in salt tolerance by comparison with the mRNA levels in salt-tolerant cotton cultivar ZM3 with that in salt-sensitive cultivar LM6. Overall, we reveal the complex changes at the transcriptional level during salt stress of cotton seedlings and provide useful starting points for more in-depth analyses of cotton’s salt tolerance.
In woody perennials, leaf structure and biochemistry vary with tree age under changing environments. However, the related eco-physiological mechanisms have not been elucidated yet. In this study, we investigated agerelated responses of juvenile and mature subalpine fir trees (Abies faxoniana Rehder & E.H. Wilson.) growing at altitudes between 2,500 and 3,500 m in the Wanglang Natural Reserve in southwest China, to study the adaptive strategies of different age trees to suit changing environments. We found that there were distinct age- and altituderelated changes in the structural and biochemical characteristics of leaves. At all altitudes, mature trees exhibited higher area- and mass-based leaf nitrogen content (Narea, Nmass), leaf mass per area (LMA) and stable isotope carbon composition (δ13C), and a lower chlorophyll (Chl) content than those juvenile trees, except for Nmass at 3,000 m as well as LMA at 2,750 m, where the values of Nmass and LMA in mature trees were slightly lower than those in juvenile trees. Furthermore, leaf characteristics showed significant differences in the change rates with altitude between different age groups. Our results indicated that assimilative organs in mature trees do not suffering from nutrient deficiency and that juvenile and mature trees possess different adaptive growth strategies under changing environments, as indicated by higher leaf N content in mature trees and the opposite patterns of LMA and Chl content between two age groups. We also concluded that juvenile could be more sensitive to global warming due to a greater altitudinal influence on the leaf traits in juvenile trees than those in mature trees.
A new genus, Furcata is erected and Furcata quadrangula is described as a new species Jour known species, Furcata dichromella (Ragonot), F. paradichromella (Yamanaka) F.pseudodichromella (Yamanaka) and F. karenkolla (Shibuya) are positioned in the new genus with F. dichromella (Ragonot) as the type species. The first three are transferred from Trachycera Ragonot, the last from Eurhodope Hübner. Both male and female genitalia of these five species, except the female of the new species, are illustrated. The type of the new species and other specimens examined are deposited in the Institute of Zoology, Chinese Academy of Sciences, Beijing (abbreviated as IZCAS in the following text).
Human STAU1 is one member of the family of double-stranded RNA (dsRNA)-binding proteins. It is thought to function in transporting mRNA, controlling translation and eliciting mRNA decay in neurons, and to function in infection of influenza virus and human immunodeficiency virus type 1 (HIV-1). Four transcripts coding two isoforms have been identified before. In this study, we have isolated a novel transcript of STAU1, coding a novel isoform that has six amino acids more (SFPLKQ) than isoform a. In order to examine the tissue distribution of this novel isoform, we have performed RT-PCR experiments and the analysis showed that it was highly expressed in heart, liver, kidney and pancreas.
River-lake connecting system (RLCS) plays an important role in controlling lake eutrophication due to its special geographical position and ecological significance. In addition, the pattern of phytoplankton variation and interaction between chlorophyll a and environmental variables are important for eutrophication management. To understand general water environment characteristics, including relationships between chlorophyll a and environmental variables in the Taige Canal-Taihu Lake system, a comparative study was conducted based on a two-year-long field investigation. This system was divided into a river region and a lake region based on cluster analysis. Investigated field data in the two regions were analyzed separately with principal component analysis (PCA) and stepwise multiple regressions for the relationships among water quality parameters. The spatial variation between the two regions can be found both in patterns of water quality parameters and relationships among them. Multivariate analysis showed that total phosphorous, chlorophyll a, and transparency were the main indicators of the spatial variations between the two regions. Relationships among water quality parameters showed that temperature and transparency were the primary environmental factors limiting phytoplankton growth in the river region. However, in the lake region phytoplankton may uptake phosphorus from sediments and its growth was limited by nitrogen during high-temperature seasons. Based on these characteristics, we suggested that reduction of nitrogen input and control of internal phosphorous loading was important for management of eutrophication in the studied area.
Whereas strong antioxidant properties of spermine have been reported mostly in in vitro studies, there is lack of the in vivo studies on spermine influence conducted on mammals. The main objective of this study was to investigate the effects of different doses of spermine and the period of its supplementation on the liver and spleen antioxidant capacity in weaned rats. Male Sprague-Dawley rats at the age of 19 days received intragastrically spermine at the dose of 0.2 or 0.4 μmol · g-1 body weight for 3 or 7 days, respectively. Control rats received saline in analogical way. It was found that liver anti-superoxide anion (ASA) capacity, catalase (CAT) activity, glutathione (GSH) content and total antioxidant capacity (T-AOC) were increased in group supplemented with higher dose of spermine after 3 days, and anti-hydroxy radical (AHR) capacity was increased when treatment lasted for 7 days. In the spleen the higher spermine dose supplementation increased ASA capacity and total superoxide dismutase (T-SOD) activity (after 3 and 7 days), AHR capacity (after 7 days) and T-AOC (after 3 days) in comparison to the corresponding control groups (P < 0.05). Only in the spleen the lower spermine dose reduced lipid peroxidation level and increased CAT activity and GSH content regardless treatment duration (P < 0.05). The obtained results suggest that spermine supplementation can improve the antioxidant properties of the liver and spleen of weaned rats in a dose-, time- and tissue-dependent manner.
Fritillaria unibracteata is a classic perennial alpine herb. In this study, we examined it's responses to shading (SH) and nitrogen addition (NA), as well as its correlation with internal C-N balance to detect how it adjusted to the changes of habitat conditions. Randomized block experiment was carried out in the field in Chuanbeimu Research Station in Songpan County, Sichuan Province, China (32°09′54″N, 103°38′36″E, altitude 3300 m a.s.l.). Two growing seasons after NA and SH, Fritillaria unibracteata's total plant biomass decreased significantly, with the proportion of biomass allocated to aboveground significantly increased. In addition, in this study, under both SH and NA treatments, Fritillaria unibracteata increased its biomass allocation to above-ground, which consisted with optimal partitioning theory. Moreover, Fritillaria unibracteata's biomass allocation was significantly correlated with its internal C-N status, regardless of nitrogen and light condition. We conclude that Fritillaria unibracteata optimizes its biomass allocation between root and shoot by adjusting its internal C-N balance, which would not be changed by the specialized resource storage organ-bulb.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.