Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Genetic research in modern sport

100%
Sport genomics is a comparatively new scientific discipline concentrating on the organization and functioning of the genome of elite athletes. It seems to be the most promising tool for sport selection, individualization of the training process, sport traumatology, and also in illegal ‘gene doping’. With genotyping more available, research of gene variants’ influence on several phenotype traits related to physical performance have been widely carried out worldwide. This review not only summarizes the current findings of sport genomics study of molecular markers, their association with athlete status and training responses, but it also explores future trends and possibilities. The importance of genetics in modern sport increases every year. However, the recent studies still represent only the first steps towards a better understanding of the genetic factors that influence human physical abilities, and therefore continuing studies are necessary.
Background: The ACTN3 R577X polymorphism has been associated with an elite athlete status. Several studies have determined that the R allele is connected with power-oriented athletic performance, whereas the nonfunctional XX genotype may give some beneficial effect for endurance performance. The main aim of the study was to determine the possible interaction between the ACTN3 R577X polymorphism and an endurance athlete status in a group of Polish rowers in comparison with sedentary individuals. Material/Methods: 121 male Polish rowers, members of academic sports clubs, and 115 unrelated volunteers were recruited for the study. Genotyping for the R577X variant was performed by PCR–RFLP. Results: The genotype distribution amongst the rowers (52.06% RR, 38.85% RX, 9.09% XX) was significantly different from that amongst sedentary individuals (RR-33.5%; RX- 49.60%; XX-17,35%; P = 0.024). A significant excess of the R allele was noted in the rowers (71.48%, P = 0.008) when comparing with the controls (60.0%). Conclusions: The obtained results show that the ACTN3 X allele and XX genotype are underrepresented in Polish rowers and they are not advantageous for the endurance-type athletes in the studied population. On the contrary, the R allele seems to be useful for a top-level rower. However, additional studies are needed to clarify this problem.
The free-living amoebae (FLA) may live in the environment and also within other organisms as parasites and then they are called amphizoic. They are potentially pathogenic for humans and animals and are found in water that is a source of infection. The aim of this study was molecular detection and identification of these FLA in natural water bodies in North-Western Poland to evaluate the risk of the pathogenic amoebae infections. We examined surface water samples collected from 50 sites and first, the tolerance thermic test was performed in order to select thermophilic, potentially pathogenic strains. For molecular identification of FLA, regions of 18S rDNA, 16S rDNA and intergenic spacers were amplified. Acanthamoeba T4 and T16 genotypes of 18S rDNA gene and 18S rDNA of H. vermiformis were detected. We identified two variants of Acanthamoeba T4 genotype, two variants of Acanthamoeba T16 genotype and one variant of H. vermiformis. Identification of the T16 genotype and H. vermiformis in water was for the first time in Poland. Additionally, we made attempts to adapt the RLB method for detection and differentiation of FLA species and strains. PCR seems to be more sensitive than RLB hybridization, though.
Angiotensin converting enzyme gene (ACE) is the most frequently investigated genetic marker in the context of genetic conditioning of athletic predispositions. The product of the gene is a key component of the renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS), mainly responsible for the regulation of blood pressure. The main aim of the study was to determine the possible interaction between the ACE l/D polymorphism and endurance athlete status in a group of Polish rowers in comparison with sedentary individuals. 121 male Polish rowers, members of academic sports clubs, and 115 unrelated volunteers, were recruited for the study. The PCR amplification of the insertion (I) or deletion (D) fragment of the ACEgene was performed. Compared with control group, the frequency of the I allele differ significantly from that found in rowers (57.4% vs. 44.3%; P = 0.013) and the ACE genotype frequency amongst the whole cohort of rowers (30.6% II, 53.7% ID, 15.7% DD) was also different from expected values (control group 19.1% II, 50.4% ID, 30.4% DD; P=0.017). Our investigation confirms a positive association of the I allele of the ACE gene with endurance athlete status in a group of Polish rowers.
Angiotensin converting enzyme gene (ACE) is the most frequently investigated genetic marker in the context of genetic conditioning of athletic predispositions. However, the knowledge of ACE’s potential modifying effect on changes in selected body traits achieved through a training programme is still limited. Therefore, we have decided to check whether selected body mass, body composition variables, oxygen uptake parameters as well as strength/speed parameters observed in physically active participants will be modulated by the ACE I/D polymorphism. The genotype distribution was examined in a group of 201 young healthy women measured for chosen traits before and after the completion of a 12-week moderate-intensive aerobic training programme. Our results revealed the significant genotype × training interactions for VEmax and power of countermovement jump, whereas training improvements were demonstrated for almost all parameters. In addition, main effects of the ACE I/D genotype on TGL, HDL, glucose and 10 m run were observed. A significant increase in VEmax was demonstrated for II and DD genotypes, but not for ID heterozygotes. The greatest gain in power of countermovement jump was observed in II homozygotes, although DD and ID were associated with a significant increase as well. Our study indicated that the polymorphism was associated with changes in VEmax and power of countermovement jump in response to a 12-week aerobic training programme in Caucasian women. However, more experimental studies are needed to establish the ACE gene × physical activity interactions.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.