Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Hydroponic experiments were conducted to investigate the role of exogenous silicon (Si) addition in increasing hexavalent chromium (Cr VI) tolerance in rice seedlings. Rice seedlings were grown under 100 µM Cr(VI) stress without or with 10 µM Si. Chromium treatment decreased growth, photosynthetic pigments and protein, which was accompanied by a significant increase in Cr accumulation and lipid peroxidation (as malondialdehyde; MDA). However, Si addition alleviated Cr toxicity and promoted growth of rice by decreasing Cr accumulation, root-to-shoot Cr transport and MDA level. Contents of macro (Mg, Ca and K) as well as micronutrients (Zn and Fe) were decreased by Cr except Mn while Si addition prevented decrease in these nutrients induced by Cr. Antioxidant capacity and total phenolic contents were decreased by Cr while these indices improved by Si addition. Treatment of Cr decreased the length of leaf epidermal cells and stomatal frequency, and adversely affected chloroplasts containing mesophyll cells and integrity of xylem and phloem, and Si addition minimized these abnormalities. However, frequency of root hairs was increased by Cr treatment. Results showed that exogenous Si addition enhanced Cr(VI) tolerance in rice seedlings by decreasing Cr accumulation, root-to-shoot Cr transport and MDA level, and by increasing content of some mineral elements (K, Fe and Zn) and antioxidant capacity compared to the Cr treatment alone.
In plant sciences, the prodigious significance of micronutrient is unavoidable since plant relies primarily on micronutrient as it has profound influence on array of plant activities. Although micronutrients are abundantly present in the soil but plants usually acquire them in relatively trace amounts; hence, regarded as tracer element. B, Cu, Fe, Mn, Zn are such micronutrients required in minute amounts by plants but inexorably play an eminent role in plant growth and development. Plant metabolism, nutrient regulation, reproductive growth, chlorophyll synthesis, production of carbohydrates, fruit and seed development, etc., are such effective functions performed by micronutrients. These tracer elements when present at adequate level, elevate the healthy growth in plant physiological, biochemical and metabolic characteristics while their deficiency promotes abnormal growth in plants. Prevalence of micronutrient deficiency has become more common in recent years and the rate of their reduction has further been increased by the perpetual demands of modern crop cultivars, high soil erosion, etc. On the basis of present existing condition, it is not difficult to conclude that, the regular increment of micronutrient deficiency will be mostly responsible for the remarkable degradation in substantiality of agricultural crops somewhere in near future and so that this issue has now been the subject of intensified research among the breeder, ingenuities and expertise of science. These micronutrients can also be proven toxic when present at accelerated concentrations and such toxicity level endangers the plant growth. Taking this into consideration, the current review unfolds the phenomenal participation of micronutrients in plant sciences and gives a brief overview of the current understanding of main features concerning several micronutrient acquisitions in agricultural crop plants.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.