Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Studied was geographic variation in 12 skull measurements of 24 samples of Rhinolophus ferrumequinum (Schreber, 1774) from south-eastern Europe. Morphological principal component 1 (69.5% of variance explained) was highly size related. Morphological principal component 2 (10.6% of variance explained) correlated significantly only with interorbital constriction. Most of the interlocality variation was due to size, which increased clinally from the north-west to the south-east. Clustering of character means produced two clusters. The ranges of overlap of condylocanine length between the two siite-related clusters showed no evidence of the existence of two clearly defined populations. July precipitation levels best explained the size variation observed. T propose that if. f. martinoi he considered a synonym of R. f, ferrumequinum.
We studied phenotypic relationships among 13 samples of two rock mice species:Apodemus mystacinus (Danford and Alston, 1877) from Anatolia (n = 38) andA. epimelas (Nehring, 1902) from the Balkans (n = 71). Cartesian coordinates of landmarks were collected on the skull and on the occlusal projection of the upper molars (18 landmarks). Centroid size (a measure of overall size) suggested that molars vary independently of overall skull size in both species. Discriminant function analysis on relative warp scores classified >80% of specimens into the correct species, with the best results obtained for the ventral aspect of the skull and for molars. Projection of the 1st discriminant function scores against centroid size provided good separation between the two species. Analysis of vector displacements associated with extremes of variation suggested considerable phenetic differences on the ventral side of the skull and in the molar shape of the two species. The great majority of shifts in landmarks were in a longitudinal direction and the rearrangements of molar cusps were more complex than was the case with the cranium. A bivariate plot of the posterior hard palate length against the incisive foramen length separatedA. mystacinus andA. epimelas well.
Morphometrical analysis of the first lower molar (Mi) confirmed Microtus liech­tensteini (Wettstein, 1927) to be closer to M. multiplex than to M, subterranean. In the terms of the inclination of the pitymyan rhombus, M. liechtensteini appeared to be more evolved than M. multiplex. Significant interpopulation variability was re­corded as regards morphometrical analysis of Mi in M. liechtensteini: M, I. petrovi was larger than the nominate race M. I. liechtensteini, while populations from the sub-Mediterranean zone differed by more open anterior loop.
We studied the intra- and interspecific size variability of 271 water shrewsNeomys fodiens (Pennant, 1771) andN. anomalus Cabrera, 1907 from seven sample sites along a latitudinal transect from Bosnia and Herzegovina to Poland.Neomys anomalus was the only water shrew in three Dinaride karst fields, while it was sympatric with N.fodiens in remaining sites. The first principal component scores (PC1; 72.2% of variance explained), derived from principal components analysis of 13 cranial, mandibular and dental measurements, were used as the size factor. One-way ANOVA detected significant interpopulation variation in both species; intraspecific variation, however, was much more pronounced inN. anomalus. No latitudinal size pattern was found in N. fodiens (r = −0.42, p = 0.58), while mean PC1 scores correlated significantly and negatively with latitude inN. anomalus (r = −0.92, p = 0.004). Therefore, along a north to south transect,N. anomalus converged in size towards N. fodiens, which suggests that the former species occupies increasingly more aquatic habitats in the same direction. Individuals from allopatric populations ofN. anomalus from Slovenia and Bosnia and Herzegovina were, on average, larger than sympatric conspecific populations from the same latitudinal zone, which is consistent with the hypothesis of character displacement.
Apodemus sylvaticus stankovici, described from the topographically rough landscape of the western Balkan glacial refugium, was recently proposed as being either a junior synonym of Apodemus flavicollis or a species on its own right. To untangle this taxonomic vagueness, we sequenced complete cytochrome b gene in 28 field mice collected at 12 locations in the mountains of Bosnia and Herzegovina, Montenegro, western Macedonia and northern Greece. Samples yielded 27 new haplotypes which clustered into two distinct groups. One of these clades also included the reference haplotype of A. flavicollis, while another cluster emerged as being identical with the reference sample for A. sylvaticus. As is common in Apodemus, both species retrieved in our analysis were characterized by low levels of intraspecific variation (0.4–0.9%) as opposed to a high level of differentiation between them (8.0–10.0%); therefore, the taxonomic classification of our material was without doubt. We found no evidence regarding the presence of an additional cryptic species in the mountains of the western Balkans. The very similar values of genetic variability in the two species imply their common evolutionary history of a long-term coexistence in the western Balkan refugium.
The fat dormouse (Glis glis L.) is a small arboreal and extreme habitat specialist mammal that is tightly linked to the deciduous mixed forests dominated by Beech (Fagus orientalis) and oaks (Quercus sp.). Despite its status in Iran as a least concern species, dormice face high risk of extinction in some parts of Europe. The unique life history and large scale distribution of the species in the Palearctic region made it as an ideal model species. This habitat specialist rodent is particularly sensitive to size and connectivity of the forest patches. The fat dormouse shows very deep molecular and morphological divergence in its eastern most parts of its global distribution, in the Hyrcanian refugium of the Northern Iran. Therefore modeling its distributional range can leads to identify biodiversity hotspots and planning conservation activities. The meteorological data, land cover types, topographical variables and geo-referenced points representing geographical locations of the fat dormouse populations (latitude/longitude) in the study area were used as the primary MaxEnt model input data. The predictive accuracy of the Fat Dormouse ecological niche model was significant (training accuracy of 93.3%). This approach successfully identified the areas of the fat dormouse presence across the study area. The result suggests that the maximum entropy modeling approach can be implemented in the next step towards the development of new tools for monitoring the habitat fragmentation and identifying biodiversity hotspots.
Three morphological characters were used to depict the position of the hybrid zone between two species of house mice, M. musculus Linnaeus, 1758 and M. domesticus Schwarz et Schwarz, 1943, across a vast area covering countries of the former Yugo­slavia, Albania, Bulgaria and Greece. Quantitative approach based on a morphological index (MI), resembling the hybrid index widely used in allozyme-based genetic studies, was used. The zone crosses Slovenia south of the Sava River, and then follows the Dinaric Mts to Montenegro and northern Albania. Contrary to many previously published results, the zone was found to run parallel with northern borders of Albania and the former Yugoslavian Macedonia, about 150 km north of the Greek border, thus giving its course rather "shallow" appearance at this part of the Balkan Peninsula.
The study reports on chromosomes in several populations of social voles from south-eastern Europe and the Middle East. The standard karyotypes of individuals of Microtus hartingi and Microtus guentheri originating from both south-eastern Europe and Asia Minor comprised 54 mostly acrocentric chromosomes. However, variation between populations was found in the amount and distribution of C-heterochromatin in certain autosomes and the sex chromosomes. Furthermore, a specific pattern of argyrophilic nucleolar organizer region distribution was recorded in different geographic populations. In a population from Asia Minor, a heterozygous centric fusion of two autosomes was found. The G-banded karyotypes of M. guentheri and Microtus socialis were compared, and tandem fusions of autosomes were suggested as possible mechanism of the divergence. The karyotypes of the nine currently recognized species of social voles are reviewed, and implications of chromosomal data for systematics are evaluated.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.