Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 12

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In arid and semi-arid ecosystems, shrubs have an important effect on neighboring plants. However, little is known about the interaction of herb growth stages and shrub location on herb performance. We selected Reaumuria soongorica, (Pall.) Maxim a shrub dominant in the semiarid region of northwest China, to determine whether (1) shrubs facilitate or have negative effects on neighbouring herbaceous vegetation, and (2) such effects vary with herb growth stage and with shrub orientation relative to herbs. The presence of herbaceous plant species, plant density, plant height, and percent cover were determined along 2 m long transects spreading in four directions from the base of shrub – east (transect E), west (transect W), south (transect S), and north (transect N); this was repeated for three growth stages (in May, June and July). Results indicated that the effects of R. soongorica on neighboring herbs in different growth stages were similar. Species number of herb-layer plants tended to increase from beneath the canopy to the opening, but plant density, cover and plant height decreased with distance away from shrub base. The presence of R. soongorica had positive effects on density, cover, and plant height, and negative on the number of herbaceous species during the entire growing season. Herbaceous plants growing on transect N under the shrub canopy had significantly higher density and percent cover than those growing in other directions. Biomass of herbs on transect N grown under the shrub canopy was higher than that of herbs on other transects. We concluded that shrub effects on neighbouring herbaceous vegetation were closely related to the shrub orientation relative to the herbs. Therefore, using shrubs as nurse plants for grass-growing must consider the relative placement of shrubs.
Nigeria is facing some serious environmental challenges due to frequent oil spills, especially in the Niger Delta. Oil spills are one of the main sources of environmental contamination in the country. Daily oil spill incidents have polluted the air, soil, natural vegetation, farmlands, sources of drinking water, and fishing creeks. Multi end member spectral mixture analysis (MESMA) was used to calculate vegetation percentage inside each pixel of Landsat7 images before and after oil spill incidents to evaluate the negative influence of spilled oil on impacted areas' vegetation. 163 recorded oil spill incidents between 2011 and 2012 were investigated in the Rivers State, Nigeria for this purpose. Results revealed that 73% of studied spill-impacted areas have vegetation losses caused by oil spills. Recorded oil spill data were used to create a comprehensive spatial database using GIS to examine which types of data could be potential determinants for oil spill influence on Nigeria’s vegetation. Among fifteen different types of examined oil spill data; this study concluded that impacted area size, spilled oil volume, residual oil volume on site, impacted area environment, and response, recovery, and cleanup timing are major determinants for oil spill influence on the Niger Delta’s vegetation.
The provinces of China have suffered from severe PM2.5 pollution in recent years, presenting a significant threat to human health. Identifying associations between mortality rate and PM2.5 level is extremely useful for a range of purposes, such as the development of preventive measures, increasing health awareness, and establishing disaster warning systems. Based on remote sensing data, station monitoring data, and statistical data, this paper uses the exposure response function, regression analysis, and kriging to evaluate the number of deaths in China’s 31 provinces caused by PM2.5 pollution in 2015. Variations in the number of deaths and mortality rates in China under different PM2.5 concentration control standards have been simulated by a range of countries and organizations helping to develop optimal control standards for each province individually according to actual PM2.5 concentration. These results show that: 1) PM2.5 pollution has an important effect on the mortality rate in China. The rate caused by PM2.5 pollution in 2015 accounted for 1.75‰, or approximately 2.62 million people and 31.14% of all deaths in China. 2) Strict control standards for PM2.5 concentration can bring significant health benefits, with projections that if PM2.5 concentration in China’s provinces were controlled to the level set by China, the EU, Japan, USA, and Australia, the number of deaths caused by PM2.5 pollution would be reduced by approximately 0.95, 1.52, 2.02, 2.26, and 2.49 million people, respectively, or 36.24%, 58.08%, 79.91%, 86.47%, and 95.20% compared with baseline year data. 3) Choosing appropriate control targets for limiting PM2.5 concentrations in different provinces in China is an effective way to obtain optimal health benefits. Beijing, Tianjin, Hebei, Shandong, and Henan should adopt a 35 μg/m3 standard with a 25 μg/m3 standard appropriate for Shanxi, Liaoning, Jilin, Shanghai, Jiangsu, Zhejiang, Anhui, Hubei, Hunan, Chongqing, Shanxi, and Xinjiang; 13 provinces, including Inner Mongolia, Heilongjiang, Fujian, Jiangxi, Guangdong, Guangxi, Sichuan, Guizhou, Yunnan, Tibet, Gansu, Qinghai, and Ningxia, should adopt the 15 μg/m³ standard; and Hainan should consider choosing a 12 μg/m³ standard.
Based on the data of population size, industrial development, energy consumption and technological level from 2013 in the Beijing-Tianjin-Hebei region, the fairness of PM₂.₅ pollution emissions were analyzed using Gini coefficient and contribution coefficient. In addition, a reduction allocation plan of PM₂.₅ concentration by 2020 in 13 cities was determined according to a minimized model of Gini coefficient model. The results showed that: (1) Gini coefficients of industrial development and technological level were greater than 0.4, implying that the PM₂.₅ pollution emissions in the region were significantly unfair from the perspective of industry and technology, especially in the aspect of technological level. (2) The spatial distribution of industrial and technological contribution coefficients presented a downward trend from Beijing and Tianjin to the periphery, and cities in Hebei Province were central to the unfairness of PM₂.₅ pollution emissions across the whole region. (3) The reduction values of PM₂.₅ concentration were between 16.7 1μg/m³ and 57.49 μg/m³, and a reduction allocation plan of PM₂.₅ concentration could improve the overall fairness of PM₂.₅ pollution emissions in the Beijing-Tianjin-Hebei region, but the unfairness of PM₂.₅ pollution emissions would not change dramatically.
Soil erosion in the Pisha sandstone area of the Loess Plateau in China has become a severe environment issue that has raised concerns globally. The projects of ecological restoration in this area and their impact on soil erosion have been analyzed using the unmanned aerial vehicle remote sensing system (UAVRSS) and the revised universal soil loss equation (RUSLE) in the Two-Tiger Valley Basin in 2013 and 2015. Our findings show that: 1) The volume of soil erosion and average soil erosion modulus decreased from 126.24 t year-1 and 6465.295 t km-2 year−1 to 114.7 t year-1 and 6333.19 t km-2 year−1 between 2013 and 2015, respectively. 2) Spatial-temporal variations of soil erosion are extremely significant. All erosion grades recorded different degrees of decline across the study period, except for the level of severe erosion. 3) There is a significant positive correlation between slope degree and soil erosion. When the slope degree was <5°, the soil erosion modulus was 51.355 t km-2 year−1, accounting for only 0.87 % of total erosion in this area. When the slope degree was >35°, the soil erosion modulus attained 2574.413 t km-2 year−1, and the erosion amount accounted for 43.52% of total erosion. Although anti-erosion and the promotion of plant growth measures have achieved noticeable ecological benefits, the present situation of preventing and controlling soil and water loss is still severe.
Surface water samples were collected from 24 sampling sites throughout the Le’an River during wet and dry seasons. The concentrations of dissolved heavy metals were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The sources of dissolved heavy metals in the Le’an River were investigated based on the seasonal and spatial variations. The results demonstrated that significant seasonality of dissolved heavy metals concentrations were found in the Le’an River, and high concentrations in dry season due to the precipitation dilution effect. Spatially, higher concentrations of selected dissolved heavy metals were distributed in the mining area, which was significantly influenced by mining activities. It was found that sites within the mining area suffered from serious pollution based on the calculated HPI and MPI. According to human health risk assessment, it was indicated that As, Co, and Cd were the major contributors to exposure to local inhabitants. The exposure risks of the adults were less sensitive compared to the children, and oral ingestion was the primary exposure pathway. Multivariate statistical analyses revealed that different groups of heavy metals were characteristics of the disparate source associated with mineral exploration, urban and agricultural activities, and geogenic origins. Hierarchical agglomerative CA grouped all the sampling sites into three clusters based on the data set of exposure risk to human health and aquatic life. In cluster 2, concentrations of Cd and As were higher than drinking water quality of WHO and Chinese standards.
This paper analysed the influence of the gradient of water levels (-54–120 cm) on Acorus calamus (A. calamus) young shoots in terms of their growth characteristics (germination rate, basal stem, height and biomass), leaf characteristics (number, area and moisture content), chlorophyll (chl) fluorescence parameters (Fv/ Fm, ETR, qP and qN) and other indicators. Based on a Gaussian model, we determined and quantified the response relationship between A. calamus young shoots and water level. The results showed that the ecological amplitude of water level for A. calamus young shoots was -52.3−141.8 cm, and the optimum range was -3.5−69.3 cm; a variety of indicators suggested that the optimum depth for A. calamus young shoots was from18.8 cm to 49.6 cm. The A. calamus seedling growth characteristics which were sensitive to changes in the water level were the germination rate and biomass. The germination rate was more sensitive to the submergence water depth, but the biomass was obviously influenced by the groundwater depth. Therefore, the A. calamus could be a suitable species for ecological restoration of land/inland water ecotones in lakes, rivers and reservoirs.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.