Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Sugarcane is a highly productive crop plant with the capacity of storing large amounts of sucrose. Sucrose accumulation in the stem of sugarcane has been studied extensively. The initial recognition and characterization of the enzymes involved in sucrose synthesis and cleavage led to the widely accepted models of how sucrose accumulation occurs in the storage tissue. New insights were gained into the physiological role of individual enzyme activities in the process of sucrose accumulation in sugarcane. Studies on cell cultures and on isolated cell fragments initially supported and strengthened these models, but more recent research has revealed their weaknesses. A dynamic model of rapid cycling of sucrose and turnover of sucrose between vacuole, metabolic and apoplastic compartments explains much of the data, but the details of how the cycling is regulated needs to be explored. Genomic research into sucrose metabolism has been based on the premise that cataloging genes expressed in association with the stalk development would ultimately lead to the identification of genes controlling the accumulation of sucrose. Considerable progress has been made in understanding and manipulating the sugarcane genome using biotechnological and cell biology approaches. Thus, the greater understanding of physiology of sucrose accumulation and the sugarcane genome will play a significant role in the future sugarcane improvement programs and will offer new opportunities to develop it as a new-generation industrial crop.
Sugarcane cell cultures were obtained from callus formed on explants derived from young expanding leaves of two early maturing sugarcane varieties viz “CoJ83” and “CoJ86”. The cell cultures were varied with different arginine concentrations in the culture medium. For each cultivar, sucrose content with 20 μM arginine in the culture medium decreased from 3 to 5 days and then increased to 10 days after subculturing. Higher concentration of arginine in the culture medium (60 μM) decreased the sucrose content at different days after subculturing and thus significantly stimulated sucrose mobilization. The activity of sucrose synthase and sucrose phosphate synthase reached maximum while the activity of acid and neutral invertase was minimal in the culture medium with 20 μM arginine. Thus arginine at low concentration (20 μM) enables the cells to accumulate the higher level of sucrose. The optimum level of amino acids can be utilized to regulate the in vivo activity of sucrose synthase, sucrose phosphate synthase and invertase to achieve maximum sucrose accumulation in sugarcane storage tissue.
The effect of sodium fluoride (10 and 50 mol·m⁻³) on the activities of sucrose metabolizing enzymes, transaminases and glutamine synthetase in relation to the transformation of free sugars to starch and protein in the fruiting structures (pod wall, seed coat, cotyledons) of chickpea was studied by culturing detached reproductive shoots in a liquid medium. Addition of fluoride to the culture medium drastically reduced starch content of the cotyledons and caused a marked build-up of total free sugars comprised mainly of reducing sugars in the pod wall and seed coat, and sucrose in the cotyledons. Concomitantly, the activity of soluble invertase was stimulated in the pod wall but reduced in the cotyledons. However, soluble protein content of both the pod wall and the cotyledons increased in conjunction with an increase in the activities of glutamate-oxaloacetate transaminase, glutamate-pyruvate transaminase and glutamine synthetase. Disruption of starch biosynthesis under the influence of fluoride and the resulting accumulation of free sugars possibly resulted in their favoured utilization in nitrogen metabolism. Labelling studies with [U-¹⁴C]-sucrose showed that the ¹⁴C incorporation into total free sugars was enhanced by fluoride in the pod wall but reduced in the seed coat and cotyledons, possibly due to an inhibitory effect on their translocation to the developing seeds.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.