Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The food and foraging strategy of fifteen species of seabirds and sea mammals from two high Arctic fjords were analysed. One of the fjords, Kongsfjord, is strongly influenced by warm waters from the Atlantic, while Hornsund is of a more Arctic character. Prey species in the Atlantic waters were more diverse (82 species and 16 functional groups) compared to those of Arctic waters (67 prey species and 14 functional groups). The consumption of top predators from Hornsund in the peak season of July was estimated at 2.86*106 MJ, while that in Kongsfjord was 1.35*106 MJ. For the analysed function of the ecosystem (the transfer of energy to the top trophic levels) the specific character of prey species is of key importance and not the diversity, abundance or biomass per se. Lower species diversity and biomass in Arctic waters is compensated for by the occurrence of larger individuals of these species, which permits top predators to prey directly on lower trophic levels.
Zooplankton inhabiting the Hornsund and Kongsfjorden fjords on Spitsbergen (Svalbard) were investigated in summer 2013. The goal of the study was to determine how the zooplankton communities vary in environments functioning under different oceanographic regimes. Sampling was conducted with nets of different mesh size and selectivity (56 μm WP-2, 180 μm MultiNet, and 1000 μm Tucker Trawl), which permitted comparing a wide size spectrum of zooplankton components. Species composition did not differ substantially between the fjords, but the zooplankton in Hornsund was almost two times less numerous, and it had lower biomass per unit volume. The highest abundance at both sites was in the smallest zooplankton size fraction found only in samples taken with 56 μm mesh WP-2 net. These comprised as much as 71% and 58% of the total zooplankton abundance in Hornsund and Kongsfjorden, respectively. The communities in both fjords had comparable contributions of Arctic and boreo-Arctic species biomass in the year of the study. However, the comparison of zooplankton characteristics over several years showed changes in abundance and biogeographic structure that corresponded with variations in the physical environments of the fjords. The results of the study permit predicting the possible effects of the increasing influence of Atlantic waters on zooplankton communities inhabiting Arctic marine pelagic ecosystems.
Zooplankton was investigated at fixed site in 24 hours in Kongsfjorden, a glacial fjord situated on the west coast of Spitsbergen (Svalbard) (79°N, 12°E), in order to unveil the level of diurnal variability in community composition and abundance. Parallel to zooplankton study water temperature and salinity were measured while information on local tides and winds was obtained from external sources. Observed changes did not exceed the range of variability regarded intrinsic, resulting from the nature of plankton. Because of this low variability we are of the opinion that the data presented can be regarded a valid measure of the natural heterogeneity of zooplankton communities in hydrologically dynamic Arctic coastal waters in summer. The observed changes in zooplankton were primarily induced by the complex dynamics of the fjord's water masses. In spite of importance of tidal forcing, the variability in zooplankton did not demonstrate similar temporal fluctuations due to modification of the water movement by other irregular forces (local wind). Also, we have not found any indication of diel vertical migration in coastal water in the Arctic under the condition of midnight sun.
9
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Can seabirds modify carbon burial in fjords?

52%
Two high latitude fjords of Spitsbergen (Hornsund 77°N and Kongsfjorden 79°N) are regarded as being highly productive (70 g and 50 gC m−2 year−1) and having organic-rich sediments. Hornsund has more organic matter in its sediments (8%), nearly half of it of terrestrial origin, while most of that in Kongsfjorden (5%) comes from fresh, marine sources (microplankton). Analysis of the carbon sources in both fjords shows that a major difference is the much larger seabird population in Hornsund-dominated with over 100 thousands pairs of plankton feeding little auks in Hornsund versus 2 thousand pairs in Kongsfjorden, and marine food consumption estimated as 5573 tonnes of carbon in Hornsund, versus 3047 tonnes in Kongsfjorden during one month of chick feeding period. Seabird colonies supply rich ornithogenic tundra (595 tonnes of C, as against only 266 tonnes of C in the Kongsfjorden tundra). No much of the terrestrial carbon, flushed out or wind-blown to the fjord, is consumed on the seabed – a state of affairs that is reflected by the low metabolic activity of bacteria and benthos and the lower benthic biomass in Hornsund than in Kongsfjorden.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.