Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 10

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
In the Slovak Republic, the moderate up to the extreme potential erosion risk was assessed for 65% of agricultural soil fund. We analyzed the universal erosion control principles, established legislative documents associated with soil erosion control, relationship between water erosion intensity and existence of soil, as well as computing methods, used in erosion control. The results of these analyses show that if the actual legislative acts will be applied in practice, soon or later the soil layer on specific sites will by totally devastated. We have also found out that application of STS No. 75 4501 protects soil better than application of Act No. 220/2004.
In recent decades much attention has been devoted to topics dealing with temporal and spatial distribution of water capacity in the soil profile and evapotranspiration. The aim of this paper was to examine and describe the effect of soil surface modifications on evaporation intensity and then recommend options with the best ability to minimize evaporation for agricultural practice. During the year 2011 the effects of the soil surface modifications on the soil water storage, the amount of evaporated water and the evaporation intensity have been observed in the experimental area – Botanical Garden of Slovak Agricultural University. The experiment used different soil surface modifications – change the surface shape (convex and concave shape), change the hydrophysical properties (detergent application), agrotechnical controls (aerating, rolling, mulching). The soil moistures to a depth of 1 m soil profile were measured using the ADR method. Then the soil water storages to a depth of 0.6 m were determined with using planimeter. Using the simplified water balance equation the amounts of evaporated water and the evaporation intensity were calculated for each experimental variant. Based on the calculated amounts of evaporated water from individual variants can be noted that evaporation was minimized the most effective by applying detergent on the soil surface with convex shape. During the monitoring period this variant was showing the lowest evaporation intensity and the total amount of evaporated water from soil (664.7 mm), about 3.25 % lower value than variant – soil without modification. This result is considered by authors for the most valuable, because it „opens door“ to the new ways how to minimize evaporation using substances which lower the surface tension.
The aim of this paper is to compare different methods of rain factor calculation. In this research were used two methodologies i.e. Wischmeier–Smith [1978] methodology and Hudson’s [1971] methodology. The main difference between these two methodologies is in the data processing especially in the calculation and choosing of kinetic energy intervals. These factors influence the resultant values of rain factor. The data for this research were provided by Slovak Hydrometeorological Institute in Bratislava, concretely were prepared data from rain-guage station Sereď for period 1962–1966. Obtained and calculated values show that Hudson relations and consequence resultant values are lower than the values calculated with Wischmeier–Smith’s methodology. After these calculations were resultant values of rain factor compared with existing values of rain factor calculated in the past by Soil Science and Conservation research Institute in the map form. This comparison showed that values calculated with using Hudson’s methodology are closer to past values. This fact is significant because it will be useful to revaluate the used methodology also because that there are deficient data about rain and the Hudson’s methodology can be use also for deficient data.
On the basis of provided data from Slovak Hydrometeorlogical Institute were realized the calculation of rain factor for each rain-guage stations. Because provided data were in digital form, we proceeded to digital processing in graphical environment of Microsoft Excel i.e. each minutes of chosen rain were considered for separate rain division. Calculated data were compared with published values of Soil Science and Conservation Research Institute (SSCRI) and also with Methodology for implementation of research results into agricultural practise. From calculated values were created also the lines of exceedance of probability, which give detail information about occurrence of calculated values of rain factor once per 100, 50, 20, 10, 5 and 1 year. Also there were compared the different methodologies of rain factor calculation and kinetic energy of rain and their influence on final values. From calculated values there were found out that on all examined localities are our calculated values several times higher than in listed publications. These differences can be caused by different methods of data processing but also by number of processed years, because values of rain factor in listed publication were calculated for lower number of years. According to calculated values were created the redistribution of rain factor values on particular months of vegetation periods and it was found out that the highest percentage fall on summer months (June, July, August) and on the other hand, the lowest percentage, on the months April and October, therefore it is necessary to attach importance on soil erosion control especially in summer months. Comparison of different methods of data processing (digital vs. graphical) showed up, that differences in final values of rain factor by using of different methods of data processing are minimal, therefore it can be assumed that used methodology is right. Relations for kinetic energy calculation and different methodologies also significantly influenced final values of rain factor. Calculation of rain according different authors showed up that using relation for kinetic energy designed by Marshall, were obtained lower values, which influenced the final value of rain factor i.e. its final values was more closer to pu- blished values. Comparison of Hudson (KE > 1) and Wischmeier and Smith methodology it was found out that with using Hudson methodology is final value of rain factor almost two times lower than with using Wischmeier and Smith methodology. It was also done the calculations of rain factor which take into account the lack of data. There were used the relations according different authors. These relations calculate only with annual precipitation. The results showed that final values of rain factor is several time higher than with using equations for example of Wischmeier and Smith.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.