Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  waste treatment
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The article presents the results of a research on the processing of undersize fraction, extracted from a stream of mixed municipal solid waste (MSW), into alternative fuel, in the process of bio-drying. The analysis was conducted with the use of an innovative EWA (Ecological Waste Apparatus) bioreactor adapted to carrying out aerobic treatment of waste in such processes as: composting, aerobic digestion/stabilization and bio-drying of waste. EWA bioreactors have been designed and manufactured by AGRO-EKO spol. s r.o. from the Czech Republic. The subject matter of the analysis was undersize fraction, with particle dimensions ranging from 0 to 50 mm, manufactured in the process of sorting (mechanical processing) of MSW. The main aim of the research was to assess suitability of the use of EWA bioreactor in the process of alternative fuel production from undersize fraction developed from municipal waste (in the process of accelerated bio-drying). Samples were collected between 2011 and 2012. The undersize fraction and the produced alternative fuel were analysed by AGRO-EKO spol. s r.o. and at the University of Agriculture in Krakow, in accordance with the standards for wastes and solid fuels. It has been concluded that undersize fraction produced from mixed municipal waste might be the energy source for cement plants or commercial power plants. As a result of a 66-hour accelerated process of bio-drying of undersize fraction (the standard time being ca. 7 days), the waste-mass has been lowered by reducing water content (moisture) in undersize fraction by ca. 15 % while increasing its calorific value and the C:N ratio. The process resulted in the increase of non-combustible and non-biodegradable elements. The high C:N ratio and the amount of organic substances at the level of 78 % should enable further aerobic and anaerobic stabilization preceded by substance moisturizing.
Subject and purpose of work: The aim of the article is to demonstrate the two possible way of pálinka distilling, also give a comparison about them regarding to the heating energy consumption. Also byproducts and wastes are presented including their utilization possibilities. Materials and methods: Based on practical experience it was created a model to calculate the difference between the two distiller systems. It has been elaborated the issues of the waste treatment by interviews at ten determinative Hungarian commercial distilleries. Results: The calculations shows that with the newer one-step distilling equipment the owner can reach about 25% energy saving. The results of the interviews shows that the full recycling of wastes is unprecedented in Hungarian distilling plants. Conclusions: The one-step distilling method is more energy efficient. It is recommended in newly built plants and should be considered to replace the traditional two-step ones.
The aim of this study was to determine the effect of reduced pressure on methane fermentation of blood, which is the main slaughter waste in the meat processing industry. The experiment was conducted in laboratory anaerobic reactors. A reactor used under atmospheric pressure was used as a control system in relation to a reactor connected to a vacuum pump, producing sub-atmospheric pressure in the reaction chamber of the bioreactor. A stable and high pH value (7.92 on average) was observed throughout the experiment at a reduced pressure, regardless of the waste load on the anaerobic sludge. In a control system, the accumulation of the waste load caused a systematic decrease in pH value, which in the final stage of the experiment dropped to 5.53. The fermentation gas, produced in the reactor with sub-atmospheric pressure, contained higher concentrations of methane – by 5-15%, ammonia – by 3-4% and hydrogen sulphide – by about 1%.
The effect of composting and anaerobic fermentations under meso- and thermophylic conditions (37° and 55℃) on the survival of bovine parvovirus (BPV) and Aujeszky’s disease viruse (ADV) in meat wastes has been examined in this study. Viruses were adsorbed on filters and introduced into carriers which were made of meat fragments of different sizes and bones or in the form of suspension they were introduced into the biomass in the course of processes of waste treatment. Carriers were removed at appropriate time intervals and virus titres were determined. The thermoresistant parvovirus survived for the longest time during mesophylic fermentation (almost 70 days), slightly shorter during composting (7-9.5 days depending on the type of carrier) and for the shortest time – at 55℃ (46-76 hours). Its inactivation rate was the fastest in a suspension, slower in meat and bone carriers. ADV inactivation proceeded considerably faster, as compared with BPV. Its active particles were not detected as early as in the 30th minute of thermophylic fermentation, the 6th hour of mesophylic fermentation and at the first sampling time during composting (at the 72nd hour). Total survival time ranged from 50 min to 13 hours. All the tested technologies enabled the effective elimination of ADV and on average twofold decrease in BPV titre. From the study conducted it follows that of both viruses, the BPV should be applied for validation processes of methods used in meat waste processing, particularly if this refers to methods where higher temperature is the factor inactivating pathogens.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.