Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  visfatin
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
 Background. There is an increasing interest in the role of adipocytokines in cardiovascular pathophysiology. Aim. The aim of the study was to compare visfatin levels, a novel adipokine, in patients with heart failure (HF) due to the left ventricular systolic dysfunction with those in age- and body mass index (BMI) - matched healthy controls in relation to the parameters of glucose metabolism and high sensitivity C-reactive protein (hsCRP) levels. Material/Subjects and Methods. The study population consisted of 28 males with systolic HF referred for cardiopulmonary exercise testing, divided into two subgroups based on their NYHA class (HF patients NYHAI+II, n=17, and HF patients NYHAIII+IV, n=11), and 23 controls. The following indices were measured in a serum samples: visfatin, hsCRP, glucose and lipid metabolism parameters, and the insulin resistance index HOMAIR (homeostasis model assessment insulin resistance) was calculated. Results. Concentrations of visfatin and high-density lipoprotein cholesterol (HDL-cholesterol) in the HF subjects were significantly lower (p ≤ 0.01) than in controls. The Kruskal-Wallis test showed significant differences between three groups (controls and both subgroups of heart failure patients) in mean levels of visfatin, hsCRP, glucose, HOMAIR and HDL-cholesterol. Conclusion. Serum visfatin concentrations in patients with systolic HF, particularly with more advanced NYHA classes, are significantly lower in comparison to healthy controls and are independent of age or anthropometric and metabolic parameters.
Visfatin is a peptide that is predominantly expressed in visceral adipose tissue and is hypothesized to be related to obesity and insulin resistance. In this study, a novel silent single-nucleotide polymorphism (SNP) was found in exon 7 of the chicken visfatin gene (also known as PBEF1) by single-stranded conformation polymorphism (SSCP) and DNA sequencing. In total, 836 chickens forming an F₂ resource population of Gushi chicken crossed with Anka broiler were genotyped by Xbal forced RFLP, and the associations of this polymorphism with chicken growth, carcass characteristics, and meat quality were analyzed. Significant associations were found between the polymorphism and 4-week body weight (BW4), 6-week body weight (BW6), 4-week body slanting length (BSL4), fat bandwidth (FBW), breast muscle water loss rate (BWLR) and breast muscle fiber density (BFD) (P < 0.05), as well as 4-week breastbone length (BBL4) (P < 0.01). These observations suggested that the polymorphism in exon7 of the visfatin gene had significant effects on the early growth traits of chicken.
9
Content available remote

Adipocytokines - novel link between inflammation and vascular funktion?

67%
Obesity and obesity related diseases are a major public health problem. Recent studies have shown that fat tissue is not a simple energy storage organ, but exerts important endocrine and immune functions. These are achieved predominantly through release of adipocytokines, which include several novel and highly active molecules released abundantly by adipocytes like leptin, resistin, adiponectin or visfatin, as well as some more classical cytokines released possibly by inflammatory cells infiltrating fat, like TNF-alpha, IL-6, MCP-1 (CCL-2), IL-1. All of those molecules may act on immune cells leading to local and generalized inflammation and may also affect vascular (endothelial) function by modulating vascular nitric oxide and superoxide release and mediating obesity related vascular disorders (including hypertension, diabetes, atherosclerosis, and insulin resistance) but also cancer or non-alcoholic fatty liver diseases. Present review, in a concise form, focuses on the effects of major adipocytokines, characteristic for adipose tissue like leptin, adiponectin, resistin and visfatin on the immune system, particularly innate and adaptive immunity as well as on blood vessels. Macrophages and T cells are populating adipose tissue which develops into almost an organized immune organ. Activated T cells further migrate to blood vessels, kidney, brain and other organs surrounded by infiltrated fat leading to their damage, thus providing a link between metabolic syndrome, inflammation and cardiovascular and other associated disorders. Ceretain treatments may lead to significant changes in adipocytokine levels. For example include beta-2 adrenoreceptor agonists, thiazolidinediones as well as androgens lead to decrease of plasma leptin levels. Moreover future treatments of metabolic system associated disorders should focus on the regulation of adipocytokines and their modes of action.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.