Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  vascular disease
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
There is growing evidence that endothelial dysfunction, which is often defined as the decreased endothelial-derived nitric oxide (NO) bioavailability, is a crucial factor leading to vascular disease states such as hypertension, diabetes, atherosclerosis, heart failure and cigarette smoking. This is due to the fact that the lack of NO in en- dothelium-dependent vascular disorders contributes to impaired vascular relax­ation, platelet aggregation, increased vascular smooth muscle proliferation, and en­hanced leukocyte adhesion to the endothelium. During the last several years, it has become clear that reduction of NO bioavailability in the endothelium-impaired func­tion disorders is associated with an increase in endothelial production of superoxide (O2 ). Because O2 - rapidly scavenges NO within the endothelium, a reduction of bioactive NO might occur despite an increased NO generation. Among many enzy­matic systems that are capable of producing O2 -, NAD(P)H oxidase and uncoupled endothelial NO synthase (eNOS) apparently are the main sources of O2- in the endothelialcells. It seems that O2– generated by NAD(P)H oxidase may trigger eNOS uncoupling and contribute to the endothelial balance between NO and O2–. That is maintained at diverse levels.
Photodynamic therapy (PDT) is a clinically approved and rapidly developing cancer treatment regimen. It is a minimally invasive two-stage procedure that requires administration of a photosensitizing agent followed by illumination of the tumor with visible light usually generated by laser sources. A third component of PDT is molecular oxygen which is required for the most effective antitumor effects. In the presence of the latter, light of an appropriate wavelength excites the photosensitizer thereby producing cytotoxic intermediates that damage cellular structures. PDT has been approved in many countries for the treatment of lung, esophageal, bladder, skin and head and neck cancers. The antitumor effects of this treatment result from the combination of direct tumor cell photodamage, destruction of tumor vasculature and activation of an immune response. The mechanisms of the direct photodamage of tumor cells, the signaling pathways that lead to apoptosis or survival of sublethaly damaged cells, and potential novel strategies of improving the antitumor efficacy of PDT are discussed.
The phenotypes of CAD related to arterial hypertension co-occurrence were analysed in 174 male patients and 117 control men for the associations with the polymorphisms of the MTHFR gene (677C>T and 1298A>C) and the PON1 gene (-108C>T) in relation to age at diagnosis (less or equal and more than 50 years). We noted the increased frequency of the three MTHFR genotypes: CC/AC, CT/AA and CC/CC in the CAD group (65.5%) in comparison to the control group (45.3%), corresponding to the 2.3-fold increased risk of CAD for men with these genotypes (95%CI (1.4-3.7); p=0.0005). The higher increase in risk of CAD was noted for the younger men (OR=3.6; 95%CI(1.6-8.3); p=0.002) and lower for the older (OR=1.8; 95%CI(1.0-3.4); p=0.03). In the normotensive men the greater impact on CAD risk had the homozygous genotypes; the 2.3-fold higher risk was associated with MTHFR CC/AC, CC/CC and TT/AA genotypes (95%CI(1.2-4.4); p=0.01). After adjustment for age, the association between CAD and MTHFR was significant only for the younger normotensive men (OR=2.8; 95%CI (1.0-8.0); p=0.04). Additionally, we found that the younger part of the control group was characterized by higher frequency of the low expression PON1 -108T allele and PON1 -108TT genotype (0.54 and 31.9% respectively) in comparison to the older men (0.41 and 17.1% respectively; p=0.03).
It has been shown that increased intake of trans fatty acids (TFAs) is associated with a higher risk of cardiovascular disease. In this study, we have investigated the effects of linoelaidic (LA) and elaidic (EA) acids on the proinflammatory response in endothelial cells, a key step in vascular disease. Human aortic endothelial cells (HAECs) were treated with different concentrations (100 µmol/l in most experiments) of LA or EA for different periods of time. The surface protein and mRNA expression of ICAM-1 and VCAM-1 were determined by flow cytometry and real time RT-PCR, respectively. Adhesion of leukocytes to TFA-treated HAECs was evaluated by an adhesion assay. Activation of nuclear factor-B (NF-B) was evaluated by measuring NF-B p65 phosphorylation using flow cytometry. ROS production was determined by the reduction of fluorescent 2',7'-dichlorofluorescein diacetate (DCFH-DA). LA treatment significantly increased protein and mRNA levels of ICAM-1 and VCAM-1, leukocyte adhesion to HAECs, phosphorylation of NF-B and ROS generation. Similar effects were achieved for cells incubated with EA. Experiments with HAECs pretreated with pyrrolidine dithiocarbamate, an inhibitor of NF-B, revealed that both LA and EA-mediated induction of ICAM-1 and VCAM-1 is mainly regulated by NF-B. The ROS production induced by both of the studied acids was inhibited in the presence of diphenyleneiodonium (DPI), a NADPH oxidase inhibitor, suggesting ROS production through the activation of NADPH oxidase. Furthermore, LA or EA-induced ICAM-1 and VCAM-1 expression, activation of NF-B and adhesion of leukocytes to HAECs were abolished in the presence of DPI. Conclusion: TFAs present in our diet have a direct proinflammatory effect, which promotes leukocyte adhesion to the endothelium through ROS-dependent NF-B activation.
Common vascular disease states including diabetes, hypertension and atherosclerosis are associated with endothelial dysfunction, characterised by reduced bioactivity of nitric oxide (NO). Loss of the vasculoprotective effects of NO contributes to disease progression, but the mechanisms underlying endothelial dysfunction remain unclear. Increased superoxide production in animal models of vascular disease contributes to reduced NO bioavailability, endothelial dysfunction and oxidative stress. In human blood vessels, the NAD(P)H oxidase system is the principal source of superoxide, and is functionally related to clinical risk factors and systemic endothelial dysfunction. Furthermore, the C242T polymorphism in the NAD(P)H oxidase p22phox subunit is associated with significantly reduced superoxide production in patients carrying the 242T allele, suggesting a role for genetic variation in modulating vascular superoxide production. In vessels from patients with diabetes mellitus, endothelial dysfunction, NAD(P)H oxidase activity and protein subunits are significantly increased compared with matched non-diabetic vessels. Furthermore, the vascular endothelium in diabetic vessels is a net source of superoxide rather than NO production, due to dysfunction of endothelial NO synthase (eNOS). This deficit is dependent on the eNOS cofactor, tetrahydrobiopterin, and is in part mediated by protein kinase C signalling. These studies suggest an important role for both the NAD(P)H oxidases and endothelial NOS in the increased vascular superoxide production and endothelial dysfunction in human vascular disease states.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.