Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 23

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  ultraviolet-B radiation
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
The epicuticular wax covering on plant surface plays important roles in protecting plants against UV radiation. However, the role of epicuticular wax in affecting leaf gas exchange under enhanced ultraviolet-B (UV-B) radiation remains obscure. In the present study, different aged leaves of Brassica napus were used to analyze the responses of crystal structure and chemical constituents of epicuticular wax to UV-B radiation and the effects of such responses on gas exchange indices. Enhanced UV-B radiation significantly decreased the amount of esters in all leaves except the first leaf, amount of secondary alcohols in the second, third and fourth leaves, and amount of primary alcohols in the second and third leaves, while increased the amounts of ketones and aldehydes in the first leaf. Enhanced UV-B level had no significant effect on the amounts of alkanes and total wax in all leaves. Exposure to UV-B radiation resulted in wax fusion on adaxial leaf and stomata opening on abaxial leaf. Fusions of plates and rods on adaxial leaf surface covered most of the stomata, thereby influencing the photosynthesis in the upper mesophyll of leaves. Enhanced UV-B level significantly reduced the net photosynthesis rate (PN) but increased the stomata conductance (gₛ), concentrations of intercellular CO₂ (Cᵢ), and transpiration rate (E) in all leaves. Both UV-B radiation and the wax fusion induced by enhanced UV-B radiation resulted in different stomata status on abaxial and adaxial leaf surface, causing decrease of PN, and increase of gₛ, Cᵢ and E in leaves.
Naked oat variety of STH296 showed higher tolerance than traditional variety Bajka on short-term UV-B radiation (UV-BBe=11 kj-m2) on the stage of primary photosynthesis reaction recorded using chlorophyll fluorescence induction of the leaves.
Atmospheric ozone remains depleted which in turn leads to the increase of UV-B radiation reaching the surface of the earth and in the same time more and more nitrogen will be imported into the terrestrial ecosystems through nitrogen deposition. These two factors will operate simultaneously. The photosynthetic and physiological responses of deciduous broad leaved species Swida hemsleyi occurring commonly at 1350–3700 m a.s.l. subjected to enhanced UV-B and to nitrogen supply were studied. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ m⁻² day⁻¹ and enhanced UV-B, 14.33 KJ m⁻² day⁻¹) and two nitrogen levels (without supplemental nitrogen supply and with supplemental nitrogen supply). An experiment was conducted in open semi-field condition in Maoxian Ecological Station of Chinese Academy of Sciences, Sichuan province, China at 1820 m a.s.l. Enhanced UV-B caused a marked decline in growth parameters, net photosynthetic rate, stomatal conductance to water vapour, chlorophyll pigments, whereas it induced an increase in rate of reactive oxygen species (ROS) production and ROS accumulation and malondialdehyde (MDA) content. Enhanced UV-B also induced an increase in leaf thickness and antioxidant compounds content, such as carotenoids and proline content. On the other hand, nitrogen supply caused an increase in some growth parameters, chlorophyll pigments and antioxidant compounds, and reduced ROS accumulation. However, nitrogen supply did not affect MDA content under enhanced UV-B, though it increased antioxidant compounds content and reduced the rate of ROS production and ROS accumulation. These results implied that enhanced UV-B brought harmful effects on Swida hemsleyi seedlings and supplemental nitrogen supply could alleviate the adverse effects of UV-B radiation on plants to some extent.
Increased UV-B radiation due to depletion of stratospheric ozone has potentially harmful effects on plant growth and development. The present study uses a field experiment to examine the effect of long-term supplemental UVB radiation at two intensities (+1.8 and +3.6 kJ m-2 d-1 above ambient) on the growth and physiology of the medicinal plant Acorus calamus L. (sweet flag). Plant height and leaf area were inhibited in a dose-dependent manner, with greater inhibition at the higher dose. At the lower dose the net photosynthetic rate increased, with an increase in stomatal conductance and water use efficiency. Stimulation of physiological functions in plants under the lower dose resulted in increased biomass production. At the higher dose, total chlorophyll content showed no marked variation, whereas carotenoids and UV-B-screening pigment flavonoids increased significantly after treatment. Increased flavonoid content under lower exposure correlates well with higher activity of phenylalanine ammonia lyase, a key enzyme of flavonoid biosynthesis. This study clearly showed that the lower dose of supplemental UV-B promoted rhizome growth in A. calamus, perhaps due to improved photosynthesis. Plant defense was stronger under the lower dose
Norway spruce (Picea abies (L.)Karst.) from seven seed sources was grown in a greenhouse with 8.3 and 14.7 kJ·m⁻²·d⁻¹ m UV-BBE (biologically effective UV-B: 280–320 nm) irradiation, and with no supplemental irradiation as control. The seedlings total biomass (dry weight) and shoot growth decreased with high UV-B treatment but spruce from low elevation seed sources were more affected. The seedlings grown at the highest UV-B irradiance (14.7 kJ·m⁻²·d⁻¹) showed from 5 to 38% inhibition of total biomass and 15 to 70 % shoot growth inhibition. Norway spruce populations from higher altitude seed sources manifested greater tolerance to UV-B radiation compared to plants from low altitudes. Changes in phospholipids and protective pigments were also determined. The plants grown at the lower UV-B irradiance (8.3 kJ·m⁻²·d⁻¹) showed greater ability to concentrations UV-B-absorbing pigments then control plants. Chlorophyll a fluorescence parameter Rfd, (Rfd=(Fm-Fs)/Fs) showed a significant decrease in needles of UV-B treated plants and this correlated with the altitude of seed source. Exposure to UV-B affect levels of the ratio of variable to maximum fluorescence (Fv/Fm). Results from this study suggest that the response to increased levels of UV-B radiation is depended upon the ecotypic differentiation of Norway spruce and involved changes in metabolites in plant tissues.
Cucumber (Cucumis sativus L. cv. Dar) leaves exposed to UV-B irradiation at a biologically effective dose of 9.5 kJ m-2d-1 showed decreased chlorophyll fluorescence parameter values versus the control; in peppermint (Mentha piperita L. cv. Asia) leaves those values were almost unchanged after treatment. Fv/Fo and Rfd were reduced more than other values, indicating inhibition of the oxygen-evolving complex and cooperation between the light and dark photosynthesis reactions as the primary targets of UV-B. The photosynthetic electron transport rate showed less change directly after irradiation, but after 24 h of recovery it was reduced to 50% of the control. Generally, photosystem II of peppermint leaves appeared more tolerant to the applied UV-B radiation than in cucumber leaves.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 2 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.