Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  tissue distribution
help Sortuj według:

help Ogranicz wyniki do:
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
Background. Menopause, also referred to as climacterium, is a period of multiple changes in the structure and functions of a woman organism. Objective. Determination of differences in body composition and fatty tissue distribution in women from groups discriminated based on their menstrual status. Material and Methods. The survey covered 312 women aged 38-75 years. Menstrual status of the surveyed women was established according to WHO guidelines based on answers to a questionnaire, and three groups were discriminated: women in the premenopausal period (group 1), in the perimenopausal period (group 2), and in the postmenopausal period (group 3). The following anthropomological measurements were taken: body height, body mass, waist and hip circumference, and thickness of 6 skinfolds. Their results enabled evaluating the somatic built of women in the separated groups. Fatty tissue distribution was determined based on TER distribution index calculated as a ratio of the sum of trunk skinfolds (TSS) to the sum of extremity skinfolds (ESS). Body composition of the women, including percentage of body fat, lean body mass, soft tissue mass, and total body water, was assessed using an IOI 353 analyzer by JAWON MEDICAL. In addition, percentages of women with underweight, normal content of fatty tissue, and these with overweight and obesity were calculated. The WHR index was computed in the case of obese women. Results. The highest values of body mass, hip circumference and most of the skinfolds were determined in the perimenopausal group, whereas the postmenopausal women were characterized by the highest percentage of body fat (PBF) and by the lowest contents of lean tissue, soft tissue, and total water content in the body. The highest percentage of obese women was found in the postmenopausal group, including 40% of them having visceral type obesity. The occurrence of the menopause contributed to changes in fatty tissue distribution, causing its shift from extremities toward the trunk. Conclusions. The study showed differences in the somatic built and body composition in groups of women distinguished based on their menstrual status.
The inhibitory effect of numerous analogues of PO-16, an hexadecadeoxyribonucleotide antisense to sequences -22 to -17 of PAI-1 mRNA coding for a fragment of the signal peptide, on the expression of PAI-1 in endothelial cells, and physiological consequences of the subsequently reduced PAI-1 activity tested in vitro and in vivo, were described in our previous studies. Of particular interest was PO-16 5'-O-conjugated with menthyl phosphorothioate (MPO-16R). In this work, tissue localisation of MPO-16R labelled with [35S] phosphorothioate at the 3'-end, was determined. [35S]MPO-16R and control [35S]MPO-16R-SENSE oligonucleotides were administered intravenously into 22 rats and organ distribution of the labelled bioconjugates was assessed after 24 and 48 h. For this purpose, tissue sections were subjected to autoradiography, and quantitated by liquid scintillation after solubilisation. Overall clearance of radioactivity was already seen after 24 h, with the radioactivity recovered mainly in the kidney and liver. A smaller fraction of radioactivity was also retained in the spleen and heart. The kidney concentration of the labelled probe was higher than that of liver by 50%. The distribution of PAI-1 mRNA in untreated rat kidney, liver, spleen and heart established by two independent techniques: Ribonuclease Protection Assay and Real-Time PCR, shows the same pattern as that observed for [35S]MPO-16R antisense.
5´-Nucleotidase specific towards dCMP and AMP was isolated from avian breast muscle and characterized. It was found to be similar to a type-I form (cN-I) identified earlier as the AMP-selective 5´-nucleotidase responsible for adenosine formation during ATP breakdown in transfected COS-7 cells. Expression pattern of the cN-I gene in pigeon tissues indicated breast muscle as a rich source of the transcript. We purified the enzyme from this source using two-step chromatography and obtained an active homogenous preparation, free of ecto-5´-nucleotidase activity. The tissue content of the activity was calculated at 0.09 U/g wet weight. The specific activity of the enzyme preparation was 4.33 U/mg protein and it preferred dCMP and AMP to dAMP and IMP as a substrate. Its kinetic properties were very similar to those of the enzyme purified earlier from heart tissue. It was strongly activated by ADP. Inhibition by inorganic phosphate was more pronounced than in heart-isolated cN-I. Despite this difference, a similar physiological function is suggested for cN-I in both types of muscle.
 Glucocorticoid receptor (GR) is a steroid hormone receptor that has been shown to play important roles in diverse cellular and physiological processes. More and more evidence has revealed that the effects of glucocorticoids are mediated by the glucocorticoid receptor through genomic or nongenomic mechanisms. A growing number of glucocorticoid receptor splice variants have been identified in human tissues, but few are known in rat tissues. In this work, a novel rGR cDNA, called rGRβ, was cloned from Sprague Dawlay (SD) rat liver. Sequence analysis revealed that the rGRβ mRNA was 39 base pairs (bp) shorter than the rGR mRNA reported earlier. The deleted segment is located in exon 1 and encodes 13 repeated glutamine residues. Both the rGR and rGRβ mRNAs were quantitated by Northern blot hybridization using non-homologous glucocorticoid cDNA probes. Results showed that the rGR and rGRβ mRNAs were most abundant in the lung, the least abundant in the heart, and there were more rGR and rGRβ mRNAs in the kidney than in the liver. The identification of rGRβ may contribute to the understanding of the genomic or nongenomic effects of glucocorticoids.
The aim of the present study was to evaluate the ability of Ornithobacterium rhinotracheale (ORT) to colonize chosen organs of chicks infected intratracheally (group A1), or intravenously (group A2), with the use of bacteriological methods and PCR. The bacteriological methods enabled to reisolate ORT bacteria from trachea and lungs of the birds from group A1 only on day 3 and 6 after infection. The PCR technique additionally detected the bacterial genetic material in these organs on the 9th day after infection, and gave positive results in the samples from air sacs until the 6th day of the experiment. In birds infected intravenously (A2) ORT was reisolated from liver on day 3 and from spleen on day 3 and 6 after infection, whereas the reisolation from the tibiotarsal joint occurred during the entire experimental period. PCR enabled to detect the bacterial DNA in the liver, spleen and lungs of chickens until the 9th day after infection and in case of tibiotarsal joint during the whole time of the study.
Human STAU1 is one member of the family of double-stranded RNA (dsRNA)-binding proteins. It is thought to function in transporting mRNA, controlling translation and eliciting mRNA decay in neurons, and to function in infection of influenza virus and human immunodeficiency virus type 1 (HIV-1). Four transcripts coding two isoforms have been identified before. In this study, we have isolated a novel transcript of STAU1, coding a novel isoform that has six amino acids more (SFPLKQ) than isoform a. In order to examine the tissue distribution of this novel isoform, we have performed RT-PCR experiments and the analysis showed that it was highly expressed in heart, liver, kidney and pancreas.
 Recently, a third evolutionarily conserved gene, NWC, was discovered within the recombination activating gene (RAG) locus, known to contain the RAG1 and RAG2 genes. Here, we identify and characterize the murine endogenous NWC protein which has no homology to any known protein and is ubiquitously expressed. In the cell, the NWC protein which has been suggested to function as a transcriptional repressor, is found in the cytoplasm as well as in the nucleus.
In this report we describe cloning and expression of rat adenosine kinase (AK) in Esccherichaia coli cells as a fusion protein with 6xHis. The recombinant protein was purified and polyclonal antibodies to AK were generated in rabbits. Immunoblot anal­ysis of extracts obtained from various rat tissues revealed two protein bands reactive with anti-AK IgG. The apparent molecular mass of these bands was 48 and 38 kDa in rat kidney, liver, spleen, brain, and lung. In heart and muscle the proteins that react with AK antibodies have the molecular masses of 48 and 40.5 kDa. In order to assess the relative AK mRNA level in rat tissues we used the multiplex PCR technique with β-actin mRNA as a reference. We found the highest level of AK mRNA in the liver, which decreased in the order kidney > spleen > lung > heart > brain > muscle. Measure­ment of AK activity in cytosolic fractions of rat tissues showed the highest activity in the liver (0.58 U/g), which decreased in the order kidney > spleen > lung > brain > heart > skeletal muscle. Kinetic studies on recombinant AK as well as on AK in the cytosolic fraction of various rat tissues showed that this enzyme is not affected by phosphate ions. The data presented indicate that in the rat tissues investigated at least two isoforms of adenosine kinase are expressed, and that the expression of the AK gene appears to have some degree of tissue specificity.
Nucleoside transporters (NT) facilitate the movement of nucleosides and nucleobases across cell membranes. NT-mediated transport is vital for the synthesis of nucleic acids in cells that lack de novo purine synthesis. Some nucleosides display biological activity and act as signalling molecules. For example, adenosine exerts a potent action on many physiological processes including vasodilatation, hormone and neurotransmitter release, platelet aggregation, and lipolysis. Therefore, carrier-mediated transport of this nucleoside plays an important role in modulating cell function, because the efficiency of the transport processes determines adenosine availability to its receptors or to metabolizing enzymes. Nucleoside transporters are also key elements in anticancer and antiviral therapy with the use of nucleoside analogues. Mammalian cells possess two major nucleoside transporter families: equilibrative (ENT) and concentrative (CNT) Na+-dependent ones. This review characterizes gene loci, substrate specificity, tissue distribution, membrane topology and structure of ENT and CNT proteins. Regulation of nucleoside transporters by various factors is also presented.
Leptin and its receptors are newly dicovered factors involved in regulation of energy homeostasis and body weight. Leptin is specifically produced and secreted by adipocytes, but its receptor isoforms have a wide tissue distribution and in many experiments it has been demonstrated that leptin also plays a regulatory role in hematopoiesis, development, reproduction and perhaps glucose metabolism. In this short review we summarise the recent discoveries surrounding leptin, its receptors and their genes, and discuss the possible web of interactions.
Pierwsza strona wyników Pięć stron wyników wstecz Poprzednia strona wyników Strona / 1 Następna strona wyników Pięć stron wyników wprzód Ostatnia strona wyników
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.